中考数学二轮复习专题《与圆有关的位置关系》练习卷 (含答案)
展开中考数学二轮复习专题
《与圆有关的位置关系》练习卷
一 、选择题
1.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是( )
A.点B在圆内
B.点B在圆上
C.点B在圆外
D.点B和圆的位置关系不确定
2.⊙O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2﹣6x+8=0的两根,则点A与⊙O的位置关系是( )
A.点A在⊙O内部 B.点A在⊙O上
C.点A在⊙O外部 D.点A不在⊙O上
3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )
A.35° B.70° C.110° D.140°
4.下列说法正确的是( )
A.过一点A的圆的圆心可以是平面上任意点
B.过两点A、B的圆的圆心在一条直线上
C.过三点A、B、C的圆的圆心有且只有一点
D.过四点A、B、C、D的圆不存在
5.在Rt△ABC中,AB=6,BC=8,则这个三角形的外接圆直径为( )
A.5 B.10 C.5或4 D.10或8
6.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( )
A.r<6 B.r=6 C.r>6 D.r≥6
7.如图,等边△ABC的边长为2,⊙A的半径为1,D是BC上的动点,DE与⊙A相切于点E,DE的最小值是( )
A.1 B. C. D.2
8.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值( )
A.5 B.4 C.4.75 D.4.8
二 、填空题
9.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC= (填度数).
10.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.
11.已知⊙O的半径为1,点P与圆心O的距离为d,且方程x2﹣2x+d=0没有实数根,则点P与⊙O的位置关系是______________.
12.如图,在矩形ABCD中,AB=8,AD=12,过点A、D两点的⊙O与BC边相切于点E,则⊙O的半径为 .
13.如图,在平面直角坐标系中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为4,则点P的坐标为 .
14.如图,直线y=﹣0.75x+3与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是 .
三 、解答题
15.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2,求PD的长.
16.如图所示,正方形ABCD的边长为4 cm,以正方形的一边BC为直径在正方形ABCD内作半圆,再过点A作半圆的切线,与半圆切于点F,与CD交于点E,求△ADE的面积.
17.在⊙O中,AB为直径,C为⊙O上一点.
(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;
(2)如图②,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.
18.如图,在四边形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA的长为半径的⊙D与AB相切于点A,与BC交于点F,过点D作DE⊥BC,垂足为点E.
(1)求证:四边形ABED为矩形;
(2)若AB=4,=,求CF的长.
19.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE⊥AB,垂足为点E,射线EP交于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若∠CAB=30°,当F是的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?说明理由.
20.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
参考答案
1.C.
2.D.
3.D
4.B.
5.D
6.C.
7.B.
8.D.
9.答案为:130°.
10.答案为:6
11.答案为:点P在⊙O外
12.答案为:.
13.答案为:P(4,4+2).
14.答案为:.
15.解:(1)证明:∵A,P,B,C是圆上的四个点,
∴∠ABC=∠APC,∠CPB=∠BAC.
∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°.
∴∠ACB=60°.
∴△ABC是等边三角形.
(2)∵△ABC是等边三角形,
∴∠ACB=60°,AC=AB=BC=2.
∵∠PAC=90°,
∴∠DAB=∠D=30°.
∴BD=AB=2.
∵四边形APBC是圆内接四边形,∠PAC=90°,
∴∠PBC=∠PBD=90°.
在Rt△PBD中,PD=4.
16.解:设DE=x cm,则CE=(4-x)cm.
∵CD,AE,AB均为⊙O的切线,
∴EF=CE=(4-x)cm,AF=AB=4 cm,
∴AE=AF+EF=(8-x)cm.
在Rt△ADE中,AE2=AD2+DE2,
即(8-x)2=42+x2,解得x=3.
∴S△ADE=AD·DE=×4×3=6(cm2).
17.解:(1)连接OC,∵⊙O与PC相切于点C,
∴OC⊥PC,即∠OCP=90°.
∵OA=OC,
∴∠OCA=∠CAB=27°,
∴∠COB=2∠CAB=54°.
在Rt△COP中,∠P+∠COP=90°,
∴∠P=90°-∠COP=36°;
(2)∵E为AC的中点,
∴OD⊥AC,即∠AEO=90°.
在Rt△AOE中,由∠EAO=10°,得∠AOE=90°-∠EAO=80°,
∴∠ACD=∠AOD=40°.
∵∠ACD是△ACP的一个外角,
∴∠P=∠ACD-∠A=40°-10°=30°.
18.解:(1)略
(2)设AD=3k(k>0),则BC=4k,
∴BE=3k,EC=BC-BE=k,DC=AD=3k,
又DE2+EC2=DC2,
∴42+k2=(3k)2,
∴k2=2,
∵k>0,
∴CF=2EC=2
19.证明:(1)连结OC.
∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,
∴∠APE=∠PCD.
∵∠APE=∠DPC,
∴∠DPC=∠PCD,
∴DC=DP.
(2)解:以A、O、C、F为顶点的四边形是菱形.
理由:连结BC、OF、AF.
∵∠CAB=30°∴∠B=60°,
∴△OBC为等边三角形,
∴∠AOC=120°.
∵F是的中点,
∴∠AOF=∠COF=60°,
∴△AOF与△COF均为等边三角形,
∴AF=AO=OC=CF,
∴四边形AOCF为菱形.
20. (1)证明:∵PD切⊙O于点C,
∴OC⊥PD,
又∵AD⊥PD,
∴OC∥AD,
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)证明:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB为⊙O的直径,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又∵tan∠ABC=,∴,∴,
设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,
∵PC2+OC2=OP2,
∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).
∴PC=4k=4×6=24.
中考数学二轮复习专题34与圆有关的位置关系含解析答案: 这是一份中考数学二轮复习专题34与圆有关的位置关系含解析答案,共29页。试卷主要包含了如图,是的外接圆,CD是的直径等内容,欢迎下载使用。
中考数学二轮复习专题《视图与投影》练习卷 (含答案): 这是一份中考数学二轮复习专题《视图与投影》练习卷 (含答案),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2023届中考数学高频考点专项练习:专题十五 考点34 与圆有关的位置关系(A): 这是一份2023届中考数学高频考点专项练习:专题十五 考点34 与圆有关的位置关系(A),共11页。试卷主要包含了如图,在中,,,等内容,欢迎下载使用。