终身会员
搜索
    上传资料 赚现金
    1.3.1 《空间直角坐标系》课件01
    1.3.1 《空间直角坐标系》课件02
    1.3.1 《空间直角坐标系》课件03
    1.3.1 《空间直角坐标系》课件04
    1.3.1 《空间直角坐标系》课件05
    1.3.1 《空间直角坐标系》课件06
    1.3.1 《空间直角坐标系》课件07
    1.3.1 《空间直角坐标系》课件08
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第一册1.3 空间向量及其运算的坐标表示优秀ppt课件

    展开
    这是一份人教A版 (2019)选择性必修 第一册1.3 空间向量及其运算的坐标表示优秀ppt课件,共23页。PPT课件主要包含了一空间直角坐标系,二空间一点的坐标,三空间向量的坐标,即时巩固,求空间点的坐标,答案不唯一,反思感悟,空间点的对称问题,空间向量的坐标等内容,欢迎下载使用。

    1.了解空间直角坐标系.2.能在空间直角坐标系中写出所给定点、向量的坐标.核心素养:数学抽象、直观想象
    1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O和一个单位正交基底{i,j,k},以O为原点,分别以i,j,k 的方向为正方向,以它们的长为单位长度建立三条数轴: ,它们都叫做坐标轴,这时我们就建立了一个 .(2)相关概念: 叫做原点,i,j,k 都叫做坐标向量,通过 的平面叫做坐标平面,分别称为 平面、 平面、 平面,它们把空间分成八个部分.
    空间直角坐标系Oxyz
    2.右手直角坐标系在空间直角坐标系中,让右手拇指指向 的正方向,食指指向 的正方向,如果中指指向 的正方向,则称这个坐标系为右手直角坐标系.
    思考 空间直角坐标系有什么作用?可以通过空间直角坐标系将空间点、直线、平面数量化,将空间位置关系解析化.
    有序实数组(x,y,z)
    思考 空间直角坐标系中,坐标轴上的点的坐标有何特征?
    x轴上的点的纵坐标、竖坐标都为0,即(x,0,0).y轴上的点的横坐标、竖坐标都为0,即(0,y,0).z轴上的点的横坐标、纵坐标都为0,即(0,0,z).
    思考 空间向量的坐标和点的坐标有什么关系?
    判断正误:1.空间直角坐标系中,在x轴上的点的坐标一定是(0,b,c)的形式.(  )2.空间直角坐标系中,在xOz平面内的点的坐标一定是(a,0,c)的形式.(  )3.关于坐标平面yOz对称的点其纵坐标、竖坐标保持不变,横坐标相反.(  )
    例1 (1)画一个正方体ABCD-A1B1C1D1,若以A为坐标原点,以棱AB,AD,AA1所在的直线分别为x轴、y轴、z轴,取正方体的棱长为单位长度,建立空间直角坐标系,则①顶点A,C的坐标分别为______________;②棱C1C中点的坐标为_________;③正方形AA1B1B对角线的交点的坐标为__________.
    (0,0,0),(1,1,0)
    (2)已知正四棱锥P-ABCD的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.
    解 ∵正四棱锥P-ABCD的底面边长为4,侧棱长为10,
    以正四棱锥的底面中心为原点,平行于BC,AB所在的直线分别为x轴、y轴,垂直于平面ABCD的直线为z轴,建立如图所示的空间直角坐标系,
    则正四棱锥各顶点的坐标分别为A(2,-2,0),B(2,2,0),C(-2,2,0),D(-2,-2,0),P(0,0, ).
    反思感悟 (1)建立空间直角坐标系的原则①让尽可能多的点落在坐标轴上或坐标平面.②充分利用几何图形的对称性.(2)求某点M的坐标的方法作MM′垂直平面xOy,垂足M′,求M′的横坐标x,纵坐标y,即点M的横坐标x,纵坐标y,再求M点在z轴上射影的竖坐标z,即为M点的竖坐标z,于是得到M点的坐标(x,y,z).
    解 建立如图所示的空间直角坐标系.点E在z轴上,它的横坐标、纵坐标均为0,而E为DD1的中点,
    由F作FM⊥AD,FN⊥CD,垂足分别为M,N,
    例2 在空间直角坐标系中,已知点P(-2,1,4).(1)求点P关于x轴对称的点的坐标;
    (2)求点P关于xOy平面对称的点的坐标;
    (3)求点P关于点M(2,-1,-4)对称的点的坐标.
    反思感悟 空间点对称问题的解题策略(1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.
    跟踪训练 已知点P(2,3,-1)关于坐标平面xOy的对称点为P1,点P1关于坐标平面yOz的对称点为P2,点P2关于z轴的对称点为P3,则点P3的坐标为____________.
    解 建立如图所示的空间直角坐标系,
    =-4i+4j+4k=(-4,4,4).
    1.在空间直角坐标系中,P(2,3,4),Q(-2,-3,-4)两点的位置关系是( )A.关于x轴对称 B.关于yOz平面对称C.关于坐标原点对称 D.以上都不对
    3.点P(1,1,1)关于xOy平面的对称点P1的坐标为__________;点P关于z轴的对称点P2的坐标为____________.
    5.已知空间直角坐标系中三点A,B,M,点A与点B关于点M对称,且已知A点的坐标为(3,2,1),M点的坐标为(4,3,1),则B点的坐标为________.
    解析 设B点的坐标为(x,y,z),
    6.如图,正方体ABCD-A′B′C′D′的棱长为2,则图中的点M关于y轴的对称点的坐标为________________.
    解析 因为D(2,-2,0),C′(0,-2,2),所以线段DC′的中点M的坐标为(1,-2,1),所以点M关于y轴的对称点的坐标为(-1,-2,-1).
    7.已知向量p在基底{a,b,c}下的坐标为(2,1,-1),则p在基底{2a,b,-c}下的坐标为________;在基底{a+b,a-b,c}下的坐标为____________.
    解析 由题意知p=2a+b-c,则向量p在基底{2a,b,-c}下的坐标为(1,1,1).设向量p在基底{a+b,a-b,c}下的坐标为(x,y,z),则p=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,又∵p=2a+b-c,
    8.如图,在空间直角坐标系中,BC=2,原点O是BC的中点,点D在平面yOz内,且∠BDC=90°,∠DCB=30°,求点D的坐标.
    解 过点D作DE⊥BC,垂足为E.在Rt△BDC中,∠BDC=90°,∠DCB=30°,BC=2,
    1.知识清单:(1)空间直角坐标系的概念.(2)点的坐标.(3)向量的坐标.2.方法归纳:数形结合、类比联想.3.常见误区:混淆空间点的坐标和向量坐标的概念,只有起点在原点的向量的坐标才和终点的坐标相同.
    相关课件

    高中数学人教A版 (2019)选择性必修 第一册1.3 空间向量及其运算的坐标表示优质课ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第一册1.3 空间向量及其运算的坐标表示优质课ppt课件,共20页。PPT课件主要包含了pxa+yb,pxy,pxyz,一空间直角坐标系,空间中向量的坐标,P5xy-z,P6x-yz,P7-xyz,例1空间直角坐标系,BCD等内容,欢迎下载使用。

    数学选择性必修 第一册1.3 空间向量及其运算的坐标表示授课课件ppt: 这是一份数学选择性必修 第一册1.3 空间向量及其运算的坐标表示授课课件ppt,共33页。

    人教A版 (2019)选择性必修 第一册1.3 空间向量及其运算的坐标表示一等奖ppt课件: 这是一份人教A版 (2019)选择性必修 第一册1.3 空间向量及其运算的坐标表示一等奖ppt课件,共23页。PPT课件主要包含了一空间直角坐标系,二空间一点的坐标,三空间向量的坐标,即时巩固,求空间点的坐标,答案不唯一,反思感悟,空间点的对称问题,空间向量的坐标等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        1.3.1 《空间直角坐标系》课件
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map