中考数学一轮复习知识梳理《直角三角形》练习 (含答案)
展开中考数学一轮复习知识梳理
《直角三角形》练习
一 、选择题
1.以下列各组数为三角形的边长,能构成直角三角形的是( )
A.8,12, 17 B.1,2,3 C.6,8,10 D.5,12,9
2.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )
A.8 B.4 C.6 D.无法计算
3.一架250cm的梯子,斜靠在竖直的墙上,梯脚距墙终端70cm,如果梯子顶端沿着墙下滑40cm,那么梯脚将向外侧滑动( )
A.40cm B.80cm C.90cm D.150cm
4.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
A.10 B.8 C.5 D.2.5
5.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )
A.AB=A′B′=5,BC=B′C′=3
B.AB=B′C′=5,∠A=∠B′=40°
C.AC=A′C′=5,BC=B′C′=3
D.AC=A′C′=5,∠A=∠A′=40°
6.张大爷离家出门散步,他先向正东走了30m,接着又向正南走了40m,此时他离家的距离为( )
A.30m B.40m C.50m D.70m
7.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )
A.2 B.6 C.10 D.以上答案都不对
8.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为( )
A.12秒 B.16秒 C.20秒 D.30秒.
二 、填空题
9.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m后是向 方向走的(填方位).
10.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为 .
11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为 .
12.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2 047=________.
13.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为6cm,母线OE(OF)长为9cm.在母线OF上的点A处有一块爆米花残渣,且FA=3cm.在母线OE上的点B处有一只蚂蚁,且EB=1cm.这只蚂蚁从点B处沿圆锥表面爬行到A点,则爬行的最短距离为 cm.
14.如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为 .
三 、解答题
15.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)线段CD=______;
(2)求线段DB的长度.
16.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
17.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.
18.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.
(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;
(2)若AB=10,AE∶BF=3∶4,求EF的长.
19.如图,在△ABC中,∠ABC=45º,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、DC分别交于点G、H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:BG2﹣GE2=EA2.
参考答案
1.C
2.A.
3.B
4.A
5.B.
6.C
7.C.
8.B.
9.答案为:北或南;
10.答案为:6.
11.答案为:5.
12.答案为:32.
13.答案是:2.
14.答案为:.
15.解:(1)4;(2)作DE⊥BC于点E.
∵△ACD是等边三角形,
∴∠ACD=60°,
又∵AC⊥BC,
∴∠DCE=∠ACB-∠ACD=90°-60°=30°,
∴Rt△CDE中,DE=DC=2,
CE=4×=2,
∴BE=BC-CE=3-2=.
∴Rt△BDE中,BD===.
16.解:(1)∵D,G分别是AB,AC的中点,
∴DG∥BC,DG=BC,
∵E,F分别是OB,OC的中点,
∴EF∥BC,EF=BC.
∴DG=EF,DG∥EF,
∴四边形DEFG是平行四边形;
(2)∵∠OBC和∠OCB互余,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°.
∵M为EF的中点,OM=3,
∴EF=2OM=6.
由(1)有四边形DEFG是平行四边形,
∴DG=EF=6.
17.证明:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△BDG和△ADC中,
,
∴△BDG≌△ADC(SAS),
∴BG=AC,∠BGD=∠C,
∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,
∴DE=BG=EG,DF=AC=AF,
∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,
∴∠EDG+∠FDA=90°,
∴DE⊥DF;
(2)解:∵AC=10,
∴DE=DF=5,
由勾股定理得,EF==5.
18.解:(1)由旋转知:△BCG≌△ACE.
∴CG=CE,∠BCG=∠ACE.
∵∠ACE+∠BCF=45°,
∴∠BCG+∠BCF=45°,
即∠GCF=∠ECF=45°,
而CF为公共边,
∴△EFC≌△GFC(SAS);
(2)连接FG.
由△BCG≌△ACE知:∠CBG=∠A=45°,
∴∠GBF=∠CBG+∠CBF=90°,
由△EFC≌△GFC知:EF=GF.
设BG=AE=3x,BF=4x,
则在Rt△GBF中,GF=5x,
∴EF=GF=5x,
∴AB=3x+5x+4x=10,
∴AB=,
∴EF=5x=.
19.解:(1)BH=AC
证明:∵∠BDC=∠BEC=∠CDA=90º, ∠ABC=45º,
∴∠BCD=45º=∠ABC,
∴DB=DC.
又∵∠BHD=∠CHE,
∴∠DBH=∠DCA,
∴△DBH≌△DCA,
∴BH=AC.
(2)证明:连接GC,
∴GC2﹣GE2=EC2.
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=GC,
∴BG2﹣GE2=EC2.
∵∠ABE=∠CBE,
∴EC=EA,
∴BG2﹣GE2=EA2
中考数学一轮复习知识梳理《与圆有关的性质》练习 (含答案): 这是一份中考数学一轮复习知识梳理《与圆有关的性质》练习 (含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习知识梳理《与圆有关的位置关系》练习 (含答案): 这是一份中考数学一轮复习知识梳理《与圆有关的位置关系》练习 (含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习知识梳理《与圆有关的计算》练习 (含答案): 这是一份中考数学一轮复习知识梳理《与圆有关的计算》练习 (含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。