终身会员
搜索
    上传资料 赚现金

    北师大版数学九上第2章 测试卷(1)

    立即下载
    加入资料篮
    北师大版数学九上第2章 测试卷(1)第1页
    北师大版数学九上第2章 测试卷(1)第2页
    北师大版数学九上第2章 测试卷(1)第3页
    还剩16页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学九上第2章 测试卷(1)

    展开

    这是一份北师大版数学九上第2章 测试卷(1),共19页。试卷主要包含了精心选一选,相信自己的判断!,耐心填一填,按要求解一元二次方程,细心做一做等内容,欢迎下载使用。


    第二章 一元二次方程测试卷(1)
    一、精心选一选,相信自己的判断!(每小题3分,共30分)
    1.(3分)方程2x2﹣3=0的一次项系数是(  )
    A.﹣3 B.2 C.0 D.3
    2.(3分)方程x2=2x的解是(  )
    A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=
    3.(3分)方程x2﹣4=0的根是(  )
    A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4
    4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是(  )
    A.﹣1 B.0 C.1 D.2
    5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是(  )
    A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9
    6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是(  )

    A.x2+130x﹣1400=0 B.x2+65x﹣350=0
    C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0
    7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是(  )
    A.6 B.8 C.10 D.12
    8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为(  )
    A.12 B.12或15 C.15 D.不能确定
    9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是(  )
    A.1 B.1或﹣1 C.﹣1 D.2
    10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有(  )名学生.
    A.12 B.12或66 C.15 D.33

    二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).
    11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:  .
    12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=  ,另一个根是  .
    13.(3分)方程(2y+1)(2y﹣3)=0的根是  .
    14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=  .
    15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是  .
     
    三、按要求解一元二次方程:(20分)
    16.(20分)按要求解一元二次方程
    (1)4x2﹣8x+1=0(配方法)
    (2)7x(5x+2)=6(5x+2)(因式分解法)
    (3)3x2+5(2x+1)=0(公式法)
    (4)x2﹣2x﹣8=0.
     
    四、细心做一做:
    17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?

    18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?

    19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
    (1)该企业2007年盈利多少万元?
    (2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
    20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?
    21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.
    (1)经过几秒△PCQ的面积为△ACB的面积的?
    (2)经过几秒,△PCQ与△ACB相似?
    (3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.

     
    参考答案与试题解析
    一、精心选一选,相信自己的判断!(每小题3分,共30分)
    1.(3分)方程2x2﹣3=0的一次项系数是(  )
    A.﹣3 B.2 C.0 D.3
    【考点】一元二次方程的一般形式.
    【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
    【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.
    【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.
     
    2.(3分)方程x2=2x的解是(  )
    A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=
    【考点】解一元二次方程-因式分解法;因式分解-提公因式法.
    【专题】因式分解.
    【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.
    【解答】解:x2﹣2x=0
    x(x﹣2)=0
    ∴x1=0,x2=2.
    故选C.
    【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.
     
    3.(3分)方程x2﹣4=0的根是(  )
    A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4
    【考点】解一元二次方程-直接开平方法.
    【分析】先移项,然后利用数的开方解答.
    【解答】解:移项得x2=4,开方得x=±2,
    ∴x1=2,x2=﹣2.
    故选C.
    【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;
    (2)运用整体思想,会把被开方数看成整体;
    (3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
     
    4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是(  )
    A.﹣1 B.0 C.1 D.2
    【考点】根的判别式;一元二次方程的定义.
    【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.
    【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,
    当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,
    解得k>,则满足条件的最小整数k为2.
    故选D.
    【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
     
    5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是(  )
    A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9
    【考点】解一元二次方程-配方法.
    【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.
    【解答】解:移项得:x2﹣4x=5,
    配方得:x2﹣4x+22=5+22,
    (x﹣2)2=9,
    故选D.
    【点评】本题考查了解一元二次方程,关键是能正确配方.
     
    6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是(  )

    A.x2+130x﹣1400=0 B.x2+65x﹣350=0
    C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0
    【考点】由实际问题抽象出一元二次方程.
    【专题】几何图形问题.
    【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.
    【解答】解:依题意得:(80+2x)(50+2x)=5400,
    即4000+260x+4x2=5400,
    化简为:4x2+260x﹣1400=0,
    即x2+65x﹣350=0.
    故选:B.
    【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.
     
    7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是(  )
    A.6 B.8 C.10 D.12
    【考点】勾股定理.
    【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.
    【解答】解:设这三边长分别为x,x+1,x+2,
    根据勾股定理得:(x+2)2=(x+1)2+x2
    解得:x=﹣1(不合题意舍去),或x=3,
    ∴x+1=4,x+2=5,
    则三边长是3,4,5,
    ∴三角形的面积=××4=6;
    故选:A.
    【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.
     
    8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为(  )
    A.12 B.12或15 C.15 D.不能确定
    【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.
    【专题】分类讨论.
    【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.
    【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3
    ∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系
    ∴等腰三角形的腰为6,底为3
    ∴周长为6+6+3=15
    故选C.
    【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.
     
    9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是(  )
    A.1 B.1或﹣1 C.﹣1 D.2
    【考点】根的判别式.
    【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.
    【解答】解:根据题意得△=22﹣4(k+2)=0,
    解得k=﹣1.
    故选C.
    【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
     
    10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有(  )名学生.
    A.12 B.12或66 C.15 D.33
    【考点】一元二次方程的应用.
    【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.
    【解答】解:设全组共有x名学生,由题意得
    x(x﹣1)=132
    解得:x1=﹣11(不合题意舍去),x2=12,
    答:全组共有12名学生.
    故选:A.
    【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
     
    二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).
    11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2: ﹣3x2+2x﹣3=0 .
    【考点】一元二次方程的一般形式.
    【专题】开放型.
    【分析】根据一元二次方程的一般形式和题意写出方程即可.
    【解答】解:由题意得:﹣3x2+2x﹣3=0,
    故答案为:﹣3x2+2x﹣3=0.
    【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.
     
    12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=
     ﹣4 ,另一个根是 5 .
    【考点】一元二次方程的解.
    【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.
    【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,
    ∴把x=﹣1代入得:1﹣b﹣5=0,
    解得b=﹣4,
    即方程为x2﹣4x﹣5=0,
    (x+1)(x﹣5)=0,
    解得:x1=﹣1,x2=5,
    即b的值是﹣4,另一个实数根式5.
    故答案为:﹣4,5;
    【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.
     
    13.(3分)方程(2y+1)(2y﹣3)=0的根是 y1=﹣,y2= .
    【考点】解一元二次方程-因式分解法.
    【专题】因式分解.
    【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.
    【解答】解:∵(2y+1)(2y﹣3)=0,
    ∴2y+1=0或2y﹣3=0,
    解得y1=,y2=.
    【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.
     
    14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= 3 .
    【考点】根与系数的关系.
    【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,代入计算即可.
    【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,
    ∴x1+x2=3,
    故答案为:3.
    【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.
     
    15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是 y2﹣3y﹣1=0 .
    【考点】换元法解分式方程.
    【专题】换元法.
    【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体.
    【解答】解:原方程可化为:
    ﹣(x2﹣2x)+3=0
    设y=x2﹣2x
    ﹣y+3=0
    ∴1﹣y2+3y=0
    ∴y2﹣3y﹣1=0.
    【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.
     
    三、按要求解一元二次方程:(20分)
    16.(20分)按要求解一元二次方程
    (1)4x2﹣8x+1=0(配方法)
    (2)7x(5x+2)=6(5x+2)(因式分解法)
    (3)3x2+5(2x+1)=0(公式法)
    (4)x2﹣2x﹣8=0.
    【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.
    【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
    (2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.
    (3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.
    (4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【解答】解:(1)4x2﹣8x+1=0(配方法)
    移项得,x2﹣2x=﹣,
    配方得,x2﹣2x+1=﹣+1,
    (x﹣1)2=,
    ∴x﹣1=±
    ∴x1=1+,x2=1﹣.
    (2)7x(5x+2)=6(5x+2)(因式分解法)
    7x(5x+2)﹣6(5x+2)=0,
    (5x+2)(7x﹣6)=0,
    ∴5x+2=0,7x﹣6=0,
    ∴x1=﹣,x2=;
    (3)3x2+5(2x+1)=0(公式法)
    整理得,3x2+10x+5=0
    ∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,
    ∴x===,
    ∴x1=,x2=;
    (4)x2﹣2x﹣8=0.
    (x+4)(x﹣2)=0,
    ∴x+4=0,x﹣2=0,
    ∴x1=﹣4,x2=2.
    【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
     
    四、细心做一做:
    17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?

    【考点】一元二次方程的应用.
    【专题】几何图形问题.
    【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.
    【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150
    解这个方程;x2=10
    当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,
    当养鸡场的宽为x1=10m时,养鸡场的长为15m.
    答:鸡场的长与宽各为15m,10m.
    【点评】本题考查的是一元二次方程的应用,难度一般.
     
    18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?

    【考点】一元二次方程的应用.
    【专题】几何图形问题.
    【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.
    【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,
    由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)
    即x2﹣31x+30=0
    解得x1=30 x2=1
    ∵路宽不超过15米
    ∴x=30不合题意舍去
    答:小路的宽应是1米.
    【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
     
    19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
    (1)该企业2007年盈利多少万元?
    (2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
    【考点】一元二次方程的应用.
    【专题】增长率问题.
    【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).
    (1)可先求出增长率,然后再求2007年的盈利情况.
    (2)有了2008年的盈利和增长率,求出2009年的就容易了.
    【解答】解:(1)设每年盈利的年增长率为x,
    根据题意,得1500(1+x)2=2160.
    解得x1=0.2,x2=﹣2.2(不合题意,舍去).
    ∴1500(1+x)=1500(1+0.2)=1800.
    答:2007年该企业盈利1800万元.
    (2)2160(1+0.2)=2592.
    答:预计2009年该企业盈利2592万元.
    【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.
     
    20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?
    【考点】一元二次方程的应用.
    【专题】销售问题.
    【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.
    【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),
    由题意得,(500﹣40x)×(10+4x)=8000,
    整理得,5000+2000x﹣400x﹣160x2=8000,
    解得:x1=,x2=,
    当x1=时,则涨价10元,销量为:400件;
    当x2=时,则涨价30元,销量为:200件.
    答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.
    【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.
     
    21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.
    (1)经过几秒△PCQ的面积为△ACB的面积的?
    (2)经过几秒,△PCQ与△ACB相似?
    (3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.

    【考点】一元二次方程的应用;相似三角形的判定.
    【专题】几何动点问题.
    【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;
    (2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;
    (3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.
    【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,
    由题意得:PC=2xm,CQ=(6﹣x)m,
    则×2x(6﹣x)=××8×6,
    解得:x=2或x=4.
    故经过2秒或4秒,△PCQ的面积为△ACB的面积的;
    (2)设运动时间为ts,△PCQ与△ACB相似.
    当△PCQ与△ACB相似时,则有=或=,
    所以=,或=,
    解得t=,或t=.
    因此,经过秒或秒,△OCQ与△ACB相似;
    ( 3)有可能.
    由勾股定理得AB=10.
    ∵CD为△ACB的中线,
    ∴∠ACD=∠A,∠BCD=∠B,
    又PQ⊥CD,
    ∴∠CPQ=∠B,
    ∴△PCQ∽△BCA,
    ∴=,=,
    解得y=.
    因此,经过秒,PQ⊥CD.
    【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.



    相关试卷

    北师大版数学九上第3章 测试卷(3):

    这是一份北师大版数学九上第3章 测试卷(3),共15页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    北师大版数学九上第3章 测试卷(1):

    这是一份北师大版数学九上第3章 测试卷(1),共38页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北师大版数学九上第2章 测试卷(3):

    这是一份北师大版数学九上第2章 测试卷(3),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map