初中数学9.3 一元一次不等式组教课ppt课件
展开(1) 同学们,根据上图对话你能得出怎样的不等关系?
① 老师的年龄>13×2 ②老师的年龄<13×3
把老师的年龄用字母 x 表示,则
① x>26 ② x<39
问题:用每分钟可抽 30 t 水的抽水机来抽污水管道里积存的污水,估计积存的污水超过 1 200 t 而不足 1 500 t,那么将污水抽完所用时间的范围是什么?
必须满足两个条件,该怎么列式呢?
设用 x min 将污水抽完.
根据已知条件,我们知道 x 满足:
这两个不等式同时成立.
为此,我们用大括号把上述两个不等式联立起来,得
由不等式①,解得 x>40;由不等式②, 解得 x<50.
我们在同一数轴上把 x>40 与 x<50 表示出来,如图所示
容易发现它们的公共部分是 40<x<50.
求下列不等式组的解集:你能发现什么规律?
解:原不等式组的解集为: x>5.
解:原不等式组的解集为: x>2.
解:原不等式组的解集为: 3<x<5.
解:原不等式组的解集为: -1<x<2.
解:原不等式组的解集为: x<3.
解:原不等式组的解集为: x<-1.
解:原不等式组的解集没有公共部分,无解.
求下列不等式组的解集:
例1 解不等式组:
把不等式①②的解集在数轴上表示出来,如图.
由图可知,不等式①②的解集的公共部分就是 x<-3,所以这个不等式组的解集是 x<-3.
x 取哪些整数值时,不等式 5x + 2>3(x - 1) 与 都成立?
分析:求出这两个不等式组成的不等式组的解集,解集中的整数就是 x 可取的整数值.
得 .
故 x 可取的整数值是:-2,-1,0,1,2,3,4.
因为 x 只能取整数,所以 x = 6,即有 6 辆汽车运这批货物.
例2 用若干辆载重量为 8 t 的汽车运一批货物,若每辆汽车只装 4 t ,则剩下 20 t 货物;若每辆汽车装满 8 t,则最后一辆汽车不满也不空. 请你算一算:有多少辆汽车运这批货物?
解:设有 x 辆汽车,则这批货物共有 (4x + 20) t. 依题意得
解不等式组,得 5<x<7.
列一元一次不等式组解实际问题的一般步骤:
一元一次不等式组的解集
1. 选择下列不等式组的正确解集:
把不等式①、②的解集在数轴上表示出来,如图.
由图可知,不等式 ①、② 的解集的公共部分就是 x>4,所以这个不等式组的解集是 x>4.
3. x 取哪些整数值时,不等式 2 - x≥0 与都成立?
解:由题意可得不等式组 解不等式①,得 x≤2. 解不等式②,得 x>-3. 所以不等式组的解集为-3<x≤2,x 可取的整数值为-2,-1,0,1,2.
初中数学人教版七年级下册9.3 一元一次不等式组多媒体教学课件ppt: 这是一份初中数学人教版七年级下册9.3 一元一次不等式组多媒体教学课件ppt,共11页。PPT课件主要包含了学习目标,重难点,知识回顾,教学过程,探究新知,例题精讲等内容,欢迎下载使用。
数学9.3 一元一次不等式组图片课件ppt: 这是一份数学9.3 一元一次不等式组图片课件ppt,共56页。PPT课件主要包含了逐点导讲练,课堂小结,作业提升,学习目标,课时讲解,课时流程,知识点,一元一次不等式组,感悟新知,③④⑤等内容,欢迎下载使用。
2020-2021学年9.3 一元一次不等式组集体备课课件ppt: 这是一份2020-2021学年9.3 一元一次不等式组集体备课课件ppt,共20页。PPT课件主要包含了5x≤8,例1解下列不等式组,解下列不等式组,本节课你有什么收获,不等式组,学以致用,解不等式组,-3<x≤0,x≤0等内容,欢迎下载使用。