所属成套资源:中考数学二轮复习专题 练习(含答案)
中考数学二轮复习专题《规律探究问题》练习(含答案)
展开
这是一份中考数学二轮复习专题《规律探究问题》练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学二轮复习专题《规律探究问题》练习一 、选择题1.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A.9999 B.10000 C.10001 D.100022.已知在线段上依次添加1个点,2个点,3个点,……,原线段上所成线段的总条数如下表:添加点数1234线段总条数361015若在原线段上添加n个点,则原线段上所有线段总条数为( )A.n+2 B.1+2+3+…+n+n+1C.n+1 D.n(n+1)3.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm2,第②个图形的面积为8cm2,第③个图形的面积为18cm2……则第⑩个图形的面积为( )A.196cm2 B.200cm2 C.216cm2 D.256cm24.如图,下面是按照一定规律画出的“树形图”,经观察可以发现,图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个 B.56个 C.60个 D.64个5.小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形,其颗数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数,下列数既是三角形数又是正方形数的是 ( )A.2010 B.2012 C.2014 D.20166.观察如图所示图形,则第n个图形中三角形的个数是( )A.2n+2 B.4n+4 C.4n D.4n-47.已知:顺次连结矩形各边的中点,得到一个菱形,如图1;再顺次连结菱形各边的中点,得到一个新的矩形,如图2;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图3;如此反复操作下去,则第2 024个图形中直角三角形的个数有( )A.4 048个 B.4 046个 C.2 024个 D.2 023个8.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是( )A.n2+4n+2 B.6n+1 C..n2+3n+3 D.2n+49.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S=6+62+63+64+65+66+67+68+69+610②,②-①得6S-S=610-1,即5S=610-1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2021的值?你的答案是( )A. B. C. D. 二 、填空题10.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有 个正方形.11.古希腊数学家把数1,3,6,10,15,21…叫做三角数,它有一定的规律性,若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…,由此推算a2020+a2021= .12.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= .13.如图,正方形ABCD的边长为1,分别以AB,BC,CD,DA为斜边作等腰直角三角形顺次得到第1个正方形A1B1C1D1,分别以A1B1,B1C1,C1D1,D1A1,为斜边作等腰直角三角形顺次得到第2个正方形A2B2C2D2,…,以此类推,则第2026个正方形A2026B2026C2026D2026的面积是 .14.如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2024个内接正方形的边长为 .三 、解答题15.现有一组有规律排列的数:1,-1,,-,,-,1,-1,,-,,-,……其中,1,-1,,-,,-这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2027个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加? 16.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=( )2= .根据以上规律填空:(1)13+23+33+…+n3=( )2= .(2)猜想:113+123+133+143+153= . 17.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型, 解答下列问题:(1)根据上面多面体模型,完成表格中的空格: (2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是 .(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值. 18.如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠): (1)填写下表: (2)前5个正方形分割的三角形的个数的和是 ,找规律:前n个正方形分割的三角形的个数的和是 (3)原正方形能否被分割成2 016个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.
参考答案1.A.2.B.3.B4.C5.D6.C7.A.8.B9.B10.答案为:55.11.答案为:20212.12.答案为:(n2+5n+5)213.答案为:2202614.答案为:()2022.15.解:(1)∵50÷6=8……2,∴第50个数是-1.(2)∵2027÷6=337……5,1+(-1)++(-)+=,∴从第1个数开始的前2027个数的和是.(3)∵12+(-1)2+()2+(-)2+()2+(-)2=12,520÷12=43……4且12+(-1)2+()2=4.∴43×6+3=261,即共有261个数的平方相加16.解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+…+153﹣(13+23+33+…+103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.17.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2; (2)20(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.18.解:(1)有1个点时,内部分割成4个三角形;有2个点时,内部分割成4+2=6个三角形;有3个点时,内部分割成4+2×2=8个三角形;有4个点时,内部分割成4+2×3=10个三角形;…以此类推,有n个点时,内部分割成4+2×(n-1)=(2n+2)个三角形;故图表从左至右依次填入:8,10,2n+2;(2)能.理由如下:由(1)知2n+2=2016,解得n=1007,∴此时正方形ABCD内部有1007点.
相关试卷
这是一份中考数学二轮复习专题一 规律探究问题(含答案详解),共71页。试卷主要包含了图形规律探究题,数字规律探究题,与代数计算有关的规律探究题,图形变换规律探究题,函数规律探究题等内容,欢迎下载使用。
这是一份中考数学一轮复习课时练习专题3规律探究问题(含答案),共8页。试卷主要包含了观察以下等式,【阅读理解】等内容,欢迎下载使用。
这是一份中考数学二轮复习专题《几何问题探究》练习(含答案),共12页。试卷主要包含了探究,问题发现,【探究】,操作与研究,【问题情境】,定义等内容,欢迎下载使用。