所属成套资源:中考数学一轮复习 课时跟踪练习(含答案)
中考数学一轮复习《三角形》课时跟踪练习(含答案)
展开
这是一份中考数学一轮复习《三角形》课时跟踪练习(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《三角形》课时跟踪练习一 、选择题1.如图,下列图形中,每个正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是 ( )2.在建筑工地我们常可看见如图所示,用木条EF固定矩形门框ABCD的情形.这种做法根据( )A.两点之间线段最短B.两点确定一条直线C.三角形的稳定性D.矩形的四个角都是直角3.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角; ③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外; ⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内。正确的命题有( ) A.1个 B.2个 C.3个 D.4个 4.如图,在△ABC中,若AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,则AD是几个三角形的高线( ) A.4个 B.5个 C.6个 D.8个5.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为( )A.5个 B.6个 C.7个 D.8个6.如图,下列说法正确的是( ).A.∠B>∠2 B.∠2+∠D<180° C.∠1>∠B+∠D D.∠A>∠17.如图,在△ABC中,∠A=60°,∠ABC=50°,∠B.∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是( )①∠ACB=70°; ②∠BFC=115°;③∠BDF=130°;④∠CFE=40°;A.①② B.③④ C.①③ D.①②③8.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β二 、填空题9.已知一个等腰三角形的两边长分别为2cm、5cm,则第三边长是 cm.10.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为20cm2,则△BEF的面积是 cm2.11.若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是 三角形.12.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF= .13.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B= .14.如图,∠1+∠2+∠3+∠4= 三 、解答题15.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数. 16.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写下表(图画在草稿纸上,并尽量画准确) ∠BAC的度数40°60°90°120°∠BIC的度数 ∠BDI的度数 (2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理. 17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100°,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120°的三角形?若存在.请举例说明;若不存在,请说明理由. 18.如图1,在△OBC中,A是BO延长线上的一点.(1)∠B=32°,∠C=46°,则∠AOC= °,Q是BC边上一点,连接AQ交OC于点P,如图2,若∠A=18°,则∠OPQ= °,猜测:∠A+∠B+∠C与∠OPQ的大小关系是 . (2)将图2中的CO延长到点D,AQ延长到点E,连接DE,得到图3,则∠AQB等于图中哪三个角的和?并说明理由.(3)求图3中∠A+∠D+∠B+∠E+∠C的度数.
参考答案1.A2.C3.B4.C5.C6.B7.C 8.A9.答案为:5 10.答案为:5.11.答案为:直角12.答案为:250 13.答案为:95°14.答案为:360°;15.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.16.解:(1)填写表格如下:∠BAC的度数40°60°90°120°∠BIC的度数110°120°135°150°∠BDI的度数110°120°135°150°(2)∠BIC=∠BDI,理由如下:∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣=90+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI. 17.解:设三角形的三个内角为α、β、γ,(1)∵α=2β,且α+β+γ=180°,∴当α=100°时,β=50°,则γ=30°,∴这个“特征三角形”的最小内角的度数30°;(2)不存在.∵α=2β,且α+β+γ=180°,∴当α=120°时,β=60°,则γ=0°,此时不能构成三角形,∴不存在“特征角”为120°的三角形.18.解:(1)78,96,∠A+∠B+∠C=∠OPQ. (2)∠AQB=∠C+∠D+∠E.理由:∵∠EPC=∠D+∠E,∠AQB=∠C+∠EPC,∴∠AQB=∠C+∠D+∠E.(3)∵∠AQC=∠A+∠B,∠QPC=∠D+∠E,又∵∠AQC+∠QPC+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,即∠A+∠D+∠B+∠E+∠C=180°.
相关试卷
这是一份中考数学一轮复习《直角三角形》课时跟踪练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习《实数及其运算》课时跟踪练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习《图形认识》课时跟踪练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。