所属成套资源:中考数学一轮复习 课时跟踪练习(含答案)
中考数学一轮复习《与圆有关的位置关系》课时跟踪练习(含答案)
展开
这是一份中考数学一轮复习《与圆有关的位置关系》课时跟踪练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《与圆有关的位置关系》课时跟踪练习一 、选择题1.若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),你认为点P的位置为( )A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不能确定2.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,则这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M3.如图,⊙O的半径OC=5 cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8 cm,若l沿OC所在直线平移后与⊙O相切,则平移的距离是( )A.1 cm B.2 cm C.8 cm D.2 cm或8 cm4.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是( )A.4 B.2 C.8 D.4 5.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( )A.40° B.50° C.60° D.70°6.如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与边BC相切于点D,则该圆的圆心是( )A.线段AE的垂直平分线与线段AC的垂直平分线的交点B.线段AB的垂直平分线与线段AC的垂直平分线的交点C.线段AE的垂直平分线与线段BC的垂直平分线的交点D.线段AB的垂直平分线与线段BC的垂直平分线的交点7.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)与点C(0,16),则圆心M到坐标原点O的距离是( )A.10 B.8 C.4 D.28.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是( )A.甲乙都对 B.甲乙都不对 C.甲对,乙不对 D.甲不对,已对二 、填空题9.圆外一点到圆的最大距离为9cm,最小距离为4cm,则圆的半径是 cm.10.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线1的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线的距离等于1的点,即m=4,由此可知,当d=3时,m= .11.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是 .12.如图,⊙O为Rt△ABC内切圆,D,E,F为切点,若AD=6,BD=4,则△ABC面积为 .13.Rt△ABC中,∠C=90°,AC=5,BC=12,则△ABC的内切圆半径为 .14.如图,AB是半圆O的直径,D是弧AB上一点,C是弧AD的中点,过点C作AB的垂线,交AB于E,与过点D的切线交于点G,连接AD,分别交CE、CB于点P、Q,连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是 (填序号).三 、解答题15.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长. 16.如图,PA,PB是⊙O的切线,A,B为切点,连接OA并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC. 17.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求⊙O的半径. 18.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.
参考答案1.A.2.B3.D4.C5.B.6.C.7.D.8.A.9.答案为:10.10.答案为:1.11.答案为:(2,0).12.答案为:24.13.答案为:2.14.答案为:②③.15.解:(1)证明:∵A,P,B,C是圆上的四个点,∴∠ABC=∠APC,∠CPB=∠BAC.∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°.∴∠ACB=60°.∴△ABC是等边三角形.(2)∵△ABC是等边三角形,∴∠ACB=60°,AC=AB=BC=2.∵∠PAC=90°,∴∠DAB=∠D=30°.∴BD=AB=2.∵四边形APBC是圆内接四边形,∠PAC=90°,∴∠PBC=∠PBD=90°.在Rt△PBD中,PD=4.16.证明:(1)连接OB,∵PA,PB是⊙O的切线,∴OA⊥AP,OB⊥BP.又OA=OB,∴PO平分∠APC.(2)∵OA⊥AP,OB⊥BP,∴∠CAP=∠OBP=90°.∵∠C=30°,∴∠APC=90°-∠C=90°-30°=60°.∵PO平分∠APC,∴∠OPC=∠APC=×60°=30°.∴∠POB=90°-∠OPC=90°-30°=60°.又OD=OB,∴△ODB是等边三角形.∴∠OBD=60°.∴∠DBP=∠OBP-∠OBD=90°-60°=30°.∴∠DBP=∠C.∴DB∥AC.17. (1)证明:如图,连接OD,∵AB=AC,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∵OD是⊙O的半径,∴DH是⊙O的切线;(2)解:由圆周角定理知,∠1=∠5,又∵∠1=∠2,∴∠2=∠5,∴△EDC是等腰三角形,∵DH⊥AC,∴H是EC的中点,∵A是EH的中点,∴EA=AH=HC=AC,由(1)知OD∥AC,∵O是AB的中点,∴OD=AC,∴===;(3)解:设OD=x,∵OD∥EC,EA=EF=1,∴OD=FD=x,∴ED=DC=x+1,又∵AC=2OD=2x,∴EC=2x+1,∵在△CDE与△CAB中,∠2=∠2,∠1=∠5,∴△CDE∽△CAB,∴=,即CD·CB=CA·CE,得(x+1)(2x+2)=2x(2x+1),解得x1=,x2=(舍去),∴⊙O的半径为.18.证明:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴PA2=PB•PQ,在△AFP与△CEP中,,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∵PE2=PB•PQ=(EF)2,∴EF2=4BP•QP.
相关试卷
这是一份中考数学一轮复习课时练习第25课时 与圆有关的位置关系 (含答案),共22页。
这是一份2023年中考数学一轮复习《与圆有关的位置关系》课时练习(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习《图形认识》课时跟踪练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。