备战2023数学新中考二轮复习重难突破(江苏专用)专题14 图形的相似
展开
重点分析
相似多边形的性质是中考考查的热点,其中以相似多边形的相似比、面积比、周长比的关系考查较多.相似三角形的判定、性质及应用是考查的重点,常与方程、圆、四边形、三角函数等相结合,进行有关计算或证明
难点强化
难点一、比例线段
1.比例线段的定义:
在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.
2.比例线段的性质:
(1)基本性质:=ad=bc;
(2)合比性质:==;
(3)等比性质:
若==…=(b+d+…+n≠0),那么=.
3.黄金分割:
点C把线段AB分成两条线段AC和BC,如果=,则线段AB被点C黄金分割,点C叫线段AB的黄金分割点,AC与AB的比叫做黄金比.
难点二、相似多边形
1.定义:
对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比,相似比为1的两个多边形全等.
2.性质:
(1)相似多边形的对应角相等,对应边成比例;
(2)相似多边形周长的比等于相似比;
(3)相似多边形面积的比等于相似比的平方.
难点三、相似三角形
1.定义:
各角对应相等,各边对应成比例的两个三角形叫做相似三角形.
2.判定:
(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似;
(2)两角对应相等,两三角形相似;
(3)两边对应成比例且夹角相等,两三角形相似;
(4)三边对应成比例,两三角形相似;
(5)斜边和一条直角边对应成比例,两直角三角形相似.
3.性质:
(1)相似三角形的对应角相等,对应边成比例;
(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;
(3)相似三角形周长的比等于相似比;
(4)相似三角形面积的比等于相似比的平方
难点四、图形的位似
1.定义:
如果两个图形仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这两个图形叫位似图形.这个点叫做位似中心,这时的相似比称为位似比.
2.性质:
位似图形上任意一对对应点到位似中心的距离之比等于位似比.
3.画位似图形的步骤
(1)确定位似中心点;
(2)连接图形各顶点与位似中心的线段(或延长线);
(3)按位似比进行取点;
(4)顺次连接各点,所得的图形就是所求图形.
真题演练
1.(2021·江苏连云港·中考真题)如图,中,,、相交于点D,,,,则的面积是( )
A. B. C. D.
【答案】A
【解析】
【分析】
过点C作的延长线于点,由等高三角形的面积性质得到,再证明,解得,分别求得AE、CE长,最后根据的面积公式解题.
【详解】
解:过点C作的延长线于点,
与是等高三角形,
设
,
故选:A.
【点睛】
本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.
2.(2020·江苏无锡·中考真题)如图,等边的边长为3,点在边上,,线段在边上运动,,有下列结论:
①与可能相等;②与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为( )
A.①④ B.②④ C.①③ D.②③
【答案】D
【解析】
【分析】
①通过分析图形,由线段在边上运动,可得出,即可判断出与不可能相等;
②假设与相似,设,利用相似三角形的性质得出的值,再与的取值范围进行比较,即可判断相似是否成立;
③过P作PE⊥BC于E,过F作DF⊥AB于F,利用函数求四边形面积的最大值,设,可表示出,,可用函数表示出,,再根据,依据,即可得到四边形面积的最大值;
④作点D关于直线的对称点D1,作D1D2∥PQ,连接CD2交AB于点P′,在射线P′A上取P′Q′=PQ,此时四边形P′CDQ′的周长为:,其值最小,再由D1Q′=DQ′=D2 P′,,且∠AD1D2=120°,∠D2AC=90°,可得的最小值,即可得解.
【详解】
解:①∵线段在边上运动,,
∴,
∴与不可能相等,
则①错误;
②设,
∵,,
∴,即,
假设与相似,
∵∠A=∠B=60°,
∴,即,
从而得到,解得或(经检验是原方程的根),
又,
∴解得的或符合题意,
即与可能相似,
则②正确;
③如图,过P作PE⊥BC于E,过D作DF⊥AB于F,
设,
由,,得,即,
∴,
∵∠B=60°,
∴,
∵,∠A =60°,
∴,
则,
,
∴四边形面积为:,
又∵,
∴当时,四边形面积最大,最大值为:,
即四边形面积最大值为,
则③正确;
④如图,作点D关于直线的对称点D1,作D1D2∥PQ,连接CD2交AB于点P′,在射线P′A上取P′Q′=PQ,
此时四边形P′CDQ′的周长为:,其值最小,
∴D1Q′=DQ′=D2 P′,,
且∠AD1D2=180∠D1AB=180∠DAB =120°,
∴∠D1AD2=∠D2AD1==30°,∠D2AC=90°,
在△D1AD2中,∠D1AD2=30°,,
∴,
在Rt△AD2C中,
由勾股定理可得,,
∴四边形P′CDQ′的周长为:
,
则④错误,
所以可得②③正确,
故选:D.
【点睛】
本题综合考查等边三角形的性质、相似三角形的性质与判定、利用函数求最值、动点变化问题等知识.解题关键是熟练掌握数形结合的思想方法,通过用函数求最值、作对称点求最短距离,即可得解.
3.(2019·江苏苏州·中考真题)如图,在中,点为边上的一点,且,,过点作,交于点,若,则的面积为( )
A. B. C. D.
【答案】B
【解析】
【分析】
先证,利用相似三角形性质得到,即,在直角三角形ABD中易得,从而解出DC,得到△ABC的高,然后利用三角形面积公式进行解题即可
【详解】
易证
即
由题得
解得
的高易得:
故选B
【点睛】
本题主要考查相似三角形的判定和性质、等腰直角三角形的高,本题关键在于找到相似三角形求出DC的长度
4.(2019·江苏·中考真题)如图,在矩形ABCD中,AD=AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=MP;④BP=AB;⑤点F是△CMP外接圆的圆心.其中正确的个数为( )
A.2个 B.3个 C.4个 D.5个
【答案】B
【解析】
【分析】
根据折叠的性质得到∠DMC=∠EMC,∠AMP=∠EMP,于是得到∠PME+∠CME=×180°=90°,求得△CMP是直角三角形;故①正确;根据平角的定义得到点C、E、G在同一条直线上,故②错误;设AB=x,则AD=2x,得到DM=AD=x,根据勾股定理得到CM==x,根据射影定理得到CP=x,得到,故③错误;由得,求得,故④正确;根据三角形中位线性质,得到CF=PF,根据直角三角形性质得CF=PF=MF,,求得点F是△CMP外接圆的圆心,故⑤正确.
【详解】
解:∵沿着CM折叠,点D的对应点为E,
∴∠DMC=∠EMC,
∵再沿着MP折叠,使得AM与EM重合,折痕为MP,
∴∠AMP=∠EMP,
∵∠AMD=180°,
∴∠PME+∠CME=180°=90°,
∴△CMP是直角三角形;故①正确;
∵沿着CM折叠,点D的对应点为E,
∴∠D=∠MEC=90°,
∵再沿着MP折叠,使得AM与EM重合,折痕为MP,
∴∠MEG=∠A=90°,
∴∠GEC=180°,
∴点C、E、G在同一条直线上,故②错误;
∵AD=2AB,
∴设AB=x,则AD=2x,
∵将矩形ABCD对折,得到折痕MN;
∵∠PMC=90°,MN⊥PC,
∴CM2=CN•CP,
,
,故③错误;
,故④正确,
∵CD=CE,EG=AB,AB=CD,
∴CE=EG,
∵∠CEM=∠G=90°,
∴FE∥PG,
∴CF=PF,
∵∠PMC=90°,
∴CF=PF=MF,
∴点F是△CMP外接圆的圆心,故⑤正确;
故选B.
【点睛】
本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.
5.(2019·江苏·中考真题)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似( )
A.①处 B.②处 C.③处 D.④处
【答案】B
【解析】
【分析】
确定“帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长,然后利用相似三角形的对应边的比相等确定第三个顶点的位置即可.
【详解】
帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为;
“车”、“炮”之间的距离为1,“炮”②之间的距离为,“车”②之间的距离为2 ,
∵
∴马应该落在②的位置,
故选B
【点睛】
本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,难度不大.
6.(2019·江苏常州·中考真题)若,相似比为1:2,则与的面积的比为( )
A.1:2 B.2:1 C.1:4 D.4:1
【答案】C
【解析】
【详解】
试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:
∵,相似比为1:2,
∴与的面积的比为1:4.
故选C.
考点:相似三角形的性质.
7.(2021·江苏镇江·中考真题)如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=__.
【答案】
【解析】
【分析】
根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.
【详解】
解:∵M,N分别是DE,BC的中点,
∴AM、AN分别为△ADE、△ABC的中线,
∵△ADE∽△ABC,
∴==,
∴=()2=,
故答案为: .
【点睛】
本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.
8.(2021·江苏徐州·中考真题)如图,在中,点分别在边上,且,与四边形的面积的比为__________.
【答案】
【解析】
【分析】
先证明,再根据相似三角形的性质,即可得到,进而即可求解.
【详解】
解:∵,
∴
∴
∵∠B=∠B,
∴,
∴
∴与四边形的面积的比=.
故答案是:.
【点睛】
本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方,是解题的关键.
9.(2021·江苏无锡·中考真题)如图,在中,,,,点E在线段上,且,D是线段上的一点,连接,将四边形沿直线翻折,得到四边形,当点G恰好落在线段上时,________.
【答案】
【解析】
【分析】
过点F作FM⊥AC于点M,由折叠的性质得FG=,∠EFG=,EF=AE=1,再证明,得,,进而即可求解.
【详解】
解:过点F作FM⊥AC于点M,
∵将四边形沿直线翻折,得到四边形,当点G恰好落在线段上,
∴FG=,∠EFG=,EF=AE=1,
∴EG=,
∵∠FEM=∠GEF,∠FME=∠GFE=90°,
∴,
∴,
∴=,,
∴AM=AE+EM=,
∴.
故答案是:.
【点睛】
本题主要考查折叠的性质,勾股定理,相似三角形的判定和性质,添加辅助线构造”母子相似三角形“是解题的关键.
10.(2021·江苏宿迁·中考真题)如图,在△ABC中,AB=4,BC=5,点D、F分别在BC、AC上,CD=2BD,CF=2AF,BE交AD于点F,则△AFE面积的最大值是_________.
【答案】
【解析】
【分析】
连接DF,先根据相似三角形判定与性质证明,得到,进而根据CD=2BD,CF=2AF,得到,根据△ABC中,AB=4,BC=5,得到当AB⊥BC时,△ABC面积最大,即可求出△AFE面积的最大值.
【详解】
解:如图,连接DF,
∵CD=2BD,CF=2AF,
∴,
∵∠C=∠C,
∴△CDF∽△CBA,
∴,∠CFD=∠CAB,
∴DF∥BA,
∴△DFE∽△ABE,
∴,
∴,
∵CF=2AF,
∴,
∴,
∵CD=2BD,
∴,
∴,
∵△ABC中,AB=4,BC=5,
∴,当AB⊥BC时,△ABC面积最大,为,
此时△AFE面积最大为.
故答案为:
【点睛】
本题考查了相似三角形的性质与判定,根据相似三角形的性质与判定得到,理解等高三角形的面积比等于底的比是解题关键.
11.(2021·江苏无锡·中考真题)下列命题中,正确命题的个数为________.
①所有的正方形都相似
②所有的菱形都相似
③边长相等的两个菱形都相似
④对角线相等的两个矩形都相似
【答案】1
【解析】
【分析】
根据多边形的判定方法对①进行判断;利用菱形的定义对②进行判断;根据菱形的性质对③进行判断;根据矩形的性质和相似的定义可对④进行判断.
【详解】
解:所有的正方形都相似,所以①正确;
所有的菱形不一定相似,所以②错误;
边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以③错误;
对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以④错误;
故答案是:1.
【点睛】
本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键.
12.(2021·江苏扬州·中考真题)如图,在中,,矩形的顶点D、E在上,点F、G分别在、上,若,,且,则的长为________.
【答案】
【解析】
【分析】
根据矩形的性质得到GF∥AB,证明△CGF∽△CAB,可得,证明△ADG≌△BEF,得到AD=BE=,在△BEF中,利用勾股定理求出x值即可.
【详解】
解:∵DE=2EF,设EF=x,则DE=2x,
∵四边形DEFG是矩形,
∴GF∥AB,
∴△CGF∽△CAB,
∴,即,
∴,
∴AD+BE=AB-DE==,
∵AC=BC,
∴∠A=∠B,又DG=EF,∠ADG=∠BEF=90°,
∴△ADG≌△BEF(AAS),
∴AD=BE==,
在△BEF中,,
即,
解得:x=或(舍),
∴EF=,
故答案为:.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,全等三角形的判定和性质,等边对等角,解题的关键是根据相似三角形的性质得到AB的长.
13.(2021·江苏扬州·中考真题)如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.
【答案】3
【解析】
【分析】
根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.
【详解】
解:∵∠ACB=90°,点D为AB中点,
∴AB=2CD=10,
∵BC=8,
∴AC==6,
∵DE⊥BC,AC⊥BC,
∴DE∥AC,
∴,即,
∴DE=3,
故答案为:3.
【点睛】
本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.
14.(2020·江苏宿迁·中考真题)如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为_____.
【答案】6
【解析】
【分析】
过点作轴于,则,由线段的比例关系求得和的面积,再根据反比例函数的的几何意义得结果.
【详解】
解:过点作轴于,则,
,
,的面积为6,
,
,
的面积,
根据反比例函数的几何意义得,,
,
,
.
故答案为:6.
【点睛】
本题主要考查了反比例函数的的几何意义的应用,考查了相似三角形的性质与判定,关键是构造相似三角形.
15.(2020·江苏南通·中考真题)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于_____.
【答案】
【解析】
【分析】
先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.
【详解】
解:∵,
,
,
∴,
∴△ABC∽△DEF,
∴,
故答案为:.
【点睛】
本题主要考查相似三角形的性质与判定,勾股定理,本题关键是证明三角形相似.
16.(2020·江苏盐城·中考真题)如图,且,则的值为_________________.
【答案】
【解析】
【分析】
设AB=a,根据得到△ABC∽△ADE,得到对应线段成比例即可求出AB,再根据相似比的定义即可求解.
【详解】
∵
∴△ABC∽△ADE,
∴
设AB=a,则DE=10-a
故
解得a1=2,a2=8
∵
∴AB=2,
故
故答案为:2.
【点睛】
此题主要考查相似三角形的性质与判定,解题的关键是熟知得到对应线段成比例.
17.(2020·江苏苏州·中考真题)如图,在平面直角坐标系中,点、的坐标分别为、,点在第一象限内,连接、.已知,则_________.
【答案】
【解析】
【分析】
过点C作CD⊥y轴,交y轴于点D,则CD∥AO,先证CDE≌CDB(ASA),进而可得DE=DB=4-n,再证AOE∽CDE,进而可得,由此计算即可求得答案.
【详解】
解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,
∴∠DCE=∠CAO,
∵∠BCA=2∠CAO,
∴∠BCA=2∠DCE,
∴∠DCE=∠DCB,
∵CD⊥y轴,
∴∠CDE=∠CDB=90°,
又∵CD=CD,
∴CDE≌CDB(ASA),
∴DE=DB,
∵B(0,4),C(3,n),
∴CD=3,OD=n,OB=4,
∴DE=DB=OB-OD=4-n,
∴OE=OD-DE
=n-(4-n)
=2n-4,
∵A(-4,0),
∴AO=4,
∵CD∥AO,
∴AOE∽CDE,
∴ ,
∴,
解得:,
故答案为:.
【点睛】
本题综合考查了全等三角形的判定与性质,相似三角形的判定与性质以及点的坐标的应用,熟练掌握相似三角形的判定与性质是解决本题的关键.
18.(2020·江苏苏州·中考真题)如图,在中,已知,,垂足为,.若是的中点,则_________.
【答案】1
【解析】
【分析】
根据“两边对应成比例,夹角相等的两个三角形相似”证明△ADB∽△EDC,得,由AB=2则可求出结论.
【详解】
为的中点,
,
∴,
,
故答案为:1.
【点睛】
此题主要考查了三角形相似的判定与性质,得出是解答此题的关键.
19.(2020·江苏无锡·中考真题)如图,在中,,,点,分别在边,上,且,连接,,相交于点,则面积最大值为__________.
【答案】
【解析】
【分析】
作DG∥AC,交BE于点G,得到,进而得到,求出面积最大值,问题得解.
【详解】
解:如图1,作DG∥AC,交BE于点G,
∴,
∵ ,
∴
∵
∴
∴
∵AB=4,
∴
∴若面积最大,则面积最大,
如图2,当点△ABC为等腰直角三角形时,面积最大,为,
∴ 面积最大值为
故答案为:
【点睛】
本题考查了三角形面积最大问题,相似等知识点,通过OD与CD关系将求面积转化为求面积是解题关键
20.(2020·江苏无锡·中考真题)二次函数的图像过点,且与轴交于点,点在该抛物线的对称轴上,若是以为直角边的直角三角形,则点的坐标为__________.
【答案】或
【解析】
【分析】
先求出点B的坐标和抛物线的对称轴,然后分两种情况讨论:当∠ABM=90°时,如图1,过点M作MF⊥y轴于点F,易证△BFM∽△AOB,然后根据相似三角形的性质可求得BF的长,进而可得点M坐标;当∠BAM=90°时,辅助线的作法如图2,同样根据△BAE∽△AMH求出AH的长,继而可得点M坐标.
【详解】
解:对,当x=0时,y=3,∴点B坐标为(0,3),
抛物线的对称轴是直线:,
当∠ABM=90°时,如图1,过点M作MF⊥y轴于点F,则,
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
又∠MFB=∠BOA=90°,
∴△BFM∽△AOB,
∴,即,解得:BF=3,
∴OF=6,
∴点M的坐标是(,6);
当∠BAM=90°时,如图2,过点A作EH⊥x轴,过点M作MH⊥EH于点H,过点B作BE⊥EH于点E,则,
同上面的方法可得△BAE∽△AMH,
∴,即,解得:AH=9,
∴点M的坐标是(,﹣9);
综上,点M的坐标是或.
故答案为:或.
【点睛】
本题考查了抛物线与y轴的交点和对称轴、直角三角形的性质以及相似三角形的判定和性质等知识,属于常考题型,正确分类、熟练掌握相似三角形的判定和性质是解题的关键.
21.(2019·江苏淮安·中考真题)如图,,直线a、b与、、分别相交于点A、B、C和点D、E、F,若,,,则__.
【答案】4
【解析】
【分析】
根据,由平行线分线段成比例定理得到成比例线段,代入已知数据计算即可得到答案.
【详解】
∵,
∴,
又,,,
∴,
故答案为4.
【点睛】
本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系是解题的关键.
22.(2019·江苏常州·中考真题)如图,在矩形中,,点是的中点,点在上,,点、在线段上.若是等腰三角形且底角与相等,则_____.
【答案】6或
【解析】
【分析】
分两种情况:①MN为等腰△PMN的底边时,作于,则,由矩形的性质得出,
,,得出,,证明,得出,求出,证出,由等腰三角形的性质得出,,证出,得出,求出,即可得出答案;
②MN为等腰△PMN的腰时,作PF⊥BD于F,设MN=PN=x,则FN=3-x,在Rt△PNF中,由勾股定理得出方程,解方程即可.
【详解】
分两种情况:①MN为等腰△PMN的底边时,作于,如图所示:
则,
四边形是矩形,
,,,
,,
点是的中点,
,
,
,
,即,
解得:,
,
,
,
,
是等腰三角形且底角与相等,,
,,
,
,
,
,
;
②MN为等腰△PMN的腰时,作PF⊥BD于F,如图所示,
由①得:,,
设,则,
在中,,
解得:,即,
综上所述,MN的长为6或.
【点睛】
本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和等腰三角形的性质,证明三角形相似是解题的关键.
备战2023数学新中考二轮复习重难突破(浙江专用)专题17 图形的相似: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题17 图形的相似,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(浙江专用)专题14 圆的有关性质: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题14 圆的有关性质,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题14圆的有关性质解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题14圆的有关性质原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(江苏专用)专题21 概率: 这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题21 概率,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题21概率解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题21概率原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。