备战2023数学新中考二轮复习重难突破(江苏专用)专题21 概率
展开
重点分析
中考主要考查:
(1)必然事件、不可能事件及不确定事件的区别,
(2)通过计算预测不确定事件的概率.在复杂情况下列举机会均等结果、用替代物做模拟实验是重点考查内容.
难点解读
难点一、事件的有关概念
1.必然事件:
在现实生活中一定会发生的事件称为必然事件.
2.不可能事件:
在现实生活中一定不会发生的事件称为不可能事件.
3.不确定事件:
在现实生活中,有可能发生,也有可能不发生的事件称为不确定事件.
4.分类:事件
难点二、用列举法求概率
1.在不确定事件中,一件事发生的可能性大小叫做这个事件的概率.
2.适用条件:
(1)可能出现的结果为有限多个;
(2)各种结果发生的可能性相等.
3.求法:
(1)利用列表或画树状图的方法列举出所有机会均等的结果;
(2)弄清我们关注的是哪个或哪些结果;
(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.
难点三、利用频率估计概率
1.适用条件:
当试验的结果不是有限个或各种结果发生的可能性不相等.
2.方法:
进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.
3、概率的应用
概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.
真题演练
1.(2021·江苏扬州市)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.
【答案】
【分析】
先判断黑色区域的面积,再利用概率公式计算即可
【详解】
解:因为正方形的两条对角线将正方形分成面积相等的四个三角形,即四个黑色三角形的面积等于一个小正方形的面积,所以黑色区域的面积为2个小正方形的面积,而共有9个小正方形则有小球停留在黑色区域的概率是
故答案为:
【点睛】
本题考查概率的计算,正方形的性质、熟练掌握概率公式是关键
2.(2021·江苏泰州市)下列生活中的事件,属于不可能事件的是( )
A.3天内将下雨 B.打开电视,正在播新闻
C.买一张电影票,座位号是偶数号 D.没有水分,种子发芽
【答案】D
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、3天内将下雨,是随机事件;
B、打开电视,正在播新闻,是随机事件;
C、买一张电影票,座位号是偶数号,是随机事件;
D、没有水分,种子不可能发芽,故是不可能事件;
故选D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3.(2021·江苏徐州市)“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则( )
A.P=0 B.0<P<1 C.P=1 D.P>1
【答案】C
【分析】
根据不可能事件的概率为,随机事件的概率大于而小于,必然事件的概率为1,即可判断.
【详解】
解:∵一年有12个月,14个人中有12个人在不同的月份过生日,剩下的两人不论哪个月生日,都和前12人中的一个人同一个月过生日
∴“14人中至少有2人在同一个月过生日”是必然事件,
即这一事件发生的概率为.
故选:.
【点睛】
本题考查了概率的初步认识,确定此事件为必然事件是解题的关键.
4.(2021·江苏徐州市)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
袋子 糖果 | 红色 | 黄色 | 绿色 | 总计 |
甲袋 | 2颗 | 2颗 | 1颗 | 5颗 |
乙袋 | 4颗 | 2颗 | 4颗 | 10颗 |
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )
A.摸出红色糖果的概率大 B.摸出红色糖果的概率小
C.摸出黄色糖果的概率大 D.摸出黄色糖果的概率小
【答案】C
【分析】
分别对甲乙两个袋子的红色及黄色的糖果的概率进行计算,再去比较即可.
【详解】
解:P(甲袋摸出红色糖果),
P(甲袋摸出黄色糖果),
P(乙袋摸出红色糖果),
P(乙袋摸出黄色糖果),
∴P(甲袋摸出红色糖果)=P(乙袋摸出红色糖果),故A,B错误;
P(甲袋摸出黄色糖果)>P(乙袋摸出黄色糖果),故D错误,C正确.
故选:C.
【点睛】
本题主要考查了简单概率的计算,掌握概率公式并能灵活掌握是解题关键.
5.(2021·江苏常州市)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )
A.B.C.D.
【答案】D
【分析】
根据概率公式求出每个选项的概率,即可得到答案.
【详解】
解:A.指针落在阴影区域的概率是,
B.指针落在阴影区域的概率是,
C.指针落在阴影区域的概率是,
D.指针落在阴影区域的概率是,
故选D.
【点睛】
本题主要考查几何概率,熟练掌握概率公式,是解题的关键.
6.(2021·江苏南通市)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4
(1)随机摸取一个小球的标号是奇数,该事件的概率为___________;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.
【答案】(1);(2).
【分析】
(1)直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球和是5的情况,再利用概率公式求解即可求得答案;
【详解】
解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,
∴随机摸取一个小球,“摸出的小球标号是奇数”的概率为:;
故答案为:.
(2)画树状图得:
∴共有16种等可能的结果,两次取出小球标号的和等于5的情况有4种;
∴两次取出小球标号的和等于5的概率为:.
【点睛】
此题考查了树状图法与列表法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
7.(2021·江苏泰州市)江苏省第20届运动会将在泰州举办,“泰宝”和“凤娃”是运动会吉祥物.在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各2张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同.小张从中随机抽取2张换取相应的吉祥物,抽取方式有两种:第一种是先抽取1张不放回,再抽取1张;第二种是一次性抽取2张.
(1)两种抽取方式抽到不同图案卡片的概率 (填“相同”或“不同”);
(2)若小张用第一种方式抽取卡片,求抽到不同图案卡片的概率.
【答案】(1)相同;(2)
【分析】
(1)画树状图即可判断;
(2)结合第(1)题所画树状图可求概率.
【详解】
解:(1)设两张“泰宝”图案卡片为,两张“凤娃”图案卡片为
画出两种方式的树状图,是相同的,所以抽到不同图案卡片的概率是相同的.
故答案为:相同
(2)由(1)中的树状图可知,抽取到的两张卡片,共有12种等可能的结果,其中抽到不同图案卡片的结果有8种.
∴P(两张不同图案卡片)
【点睛】
本题考查了用列举法求概率的知识点,画树状图或列表是解题的基础,准确求出符合某种条件的概率是关键.
8.(2021·江苏徐州市)如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.
【答案】
【分析】
根据题意画出树状图,共有8种等可能的路径,其中落入③号槽内的有3种路径,再由概率公式求解即可.
【详解】
画树状图得:
所以圆球下落过程中共有8种路径,其中落入③号槽内的有3种,所以圆球落入③号槽内的概率为 .
【点睛】
树状图法求概率的关键在于列举出所有可能的结果,当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法.
9.(2021·江苏常州市)在3张相同的小纸条上,分别写上条件:①四边形是菱形;②四边形有一个内角是直角;③四边形的对角线相等.将这3张小纸条做成3支签,放在一个不透明的盒子中.
(1)搅匀后从中任意抽出1支签,抽到条件①的概率是__________;
(2)搅匀后先从中任意抽出1支签(不放回),再从余下的2支签中任意抽出1支签.四边形同时满足抽到的2张小纸条上的条件,求四边形一定是正方形的概率.
【答案】(1);(2)
【分析】
(1)根据等可能事件的概率公式,直接求解,即可;
(2)先画出树状图,再根据概率公式,即可求解.
【详解】
解:(1)3支签中任意抽出1支签,抽到条件①的概率=1÷3=,
故答案是:;
(2)画出树状图:
∵一共有6种等可能的结果,四边形一定是正方形的可能有4种,
∴四边形一定是正方形的概率=4÷6=.
【点睛】
本题主要考查等可能事件的概率,熟练画出树状图是解题的关键.
10.(2021·江苏盐城市)圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过31.4万亿位.有学者发现,随着小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.
(1)从的小数部分随机取出一个数字,估计数字是6的概率为________;
(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)
【答案】(1);(2)见解析,
【分析】
(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;
(2)画出树状图计算即可.
【详解】
(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,
∴数字是6的概率为,
故答案为:;
(2)解:画树状图如图所示:
∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.
∴(其中有一幅是祖冲之).
【点睛】
本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.
11.(2021·江苏无锡市)将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(1)取出的2张卡片数字相同;
(2)取出的2张卡片中,至少有1张卡片的数字为“3”.
【答案】(1);(2)
【分析】
(1)根据题意画出树状图,展示所有等可能的结果,再根据概率公式求解,即可;
(2)根据题意画出树状图,展示所有等可能的结果,再根据概率公式求解,即可.
【详解】
解:(1)画树状图如下:
∵一共16种等可能的结果,取出的2张卡片数字相同的结果有4种,
∴P(取出的2张卡片数字相同)=4÷16=;
(2)根据第(1)题的树状图,可知:一共16种等可能的结果,至少有1张卡片的数字为“3”有7种,
∴P(至少有1张卡片的数字为“3”)=7÷16=.
【点睛】
本题主要考查等可能事件的概率,画出树状图,列出所有等可能的结果,是解题的关键.
12.(2021·江苏宿迁市)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”:
将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.
(1)若从中任意抽取1张,抽得得卡片上的图案恰好为“莲莲”的概率是 .
(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)
【答案】(1);(2)
【分析】
(1)直接根据概率公式求解即可;
(2)根据题意画出树状图得出所有等情况数,找出两次抽取的卡片图案相同的情况数,然后根据概率公式即可得出答案.
【详解】
解:(1)∵有3张形状、大小、质地均相同的卡片,正面分别印有“宸宸”、“琮琮”、“莲莲”,
∴从中随机抽取1张,抽得的卡片上的图案恰好为“莲莲”的概率为;
故答案为:;
(2)把“宸宸”、“琮琮”、“莲莲”分别用字母A、B、C表示,画树状图如下:
或列表为:
| A | B | C |
A | AA | AB | AC |
B | BA | BB | BC |
C | CA | CB | CC |
由图(或表)可知:共有9种等可能的结果,其中抽到相同图案的有3种,
则两次抽取的卡片图案相同的概率是.
【点睛】
此题考查的是树状图法(或列表法)求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
13.(2021·江苏南京市)不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.
(1)从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.求两次摸出的球都是红球的概率.
(2)从袋子中随机摸出1个球,如果是红球,不放回再随机换出1个球;如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是白球的概率是________.
【答案】(1);(2).
【分析】
(1)根据题意画出树状图,然后由树状图得出所有等可能的结果数与两次摸出的球都是红球的结果数,再利用概率公式即可求得答案;
(2)方法同(1),注意第一次摸到白球要放回,其余颜色球不放回.
【详解】
解:(1)画树状图得,
∴共有9种等可能的结果数,两次摸出的球都是红球的结果数为4次,
∴两次摸出的球都是红球的概率为:;
(2)画树状图得,
∴共有7种等可能的结果数,两次摸出的球都是白球的结果数为1次,
∴两次摸出的球都是白球的概率为:;
故答案为:
【点睛】
此题考查了画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
14.(2021·江苏苏州市)4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗匀后从中任意抽取1张.将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为______;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜:否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由).
【答案】(1);(2)公平,见解析
【分析】
(1)列举出所有可能,进而求出概率;
(2)利用树状图法列举出所有可能,再利用概率公式进而得出甲、乙获胜的概率即可得出答案.
【详解】
解:(1)共有4种等可能的结果,其中数字是负数情况占1种
P(数字是负数)=;
(2)用树状图或表格列出所有等可能的结果:
∵共有12种等可能的结果,两个数的差为非负数的情况有6种,
∴(结果为非负数),
(结果为负数).
∴游戏规则公平.
【点睛】
本题考查的是概率以及游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
15.(2021·江苏扬州市)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是_________;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
【答案】(1);(2)
【分析】
(1)直接根据概率公式计算即可;
(2)画树状图,共有6种等可能的结果,甲与乙相邻而坐的结果有4种,再由概率公式求解即可.
【详解】
解:(1)∵丙坐了一张座位,
∴甲坐在①号座位的概率是;
(2)画树状图如图:
共有6种等可能的结果,甲与乙两同学恰好相邻而坐的结果有4种,
∴甲与乙相邻而坐的概率为=.
【点睛】
本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
16.(2021·江苏连云港市)为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.
(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;
(2)求所选代表恰好为1名女生和1名男生的概率.
【答案】(1);(2)
【分析】
(1)由一共有3种等可能性的结果,其中恰好选中女生乙的有1种,即可求得答案;
(2)先求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.
【详解】
解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,
∴恰好选中乙的概率为;
故答案为:;
(2)分别用字母A,B表示女生,C,D表示男生
画树状如下:
4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,
∴(1女1男).
答:所选代表恰好为1名女生和1名男生的概率是.
【点睛】
本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
备战2023数学新中考二轮复习重难突破(浙江专用)专题19 概率及有关计算: 这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题19 概率及有关计算,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(江苏专用)专题20 统计: 这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题20 统计,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题20统计解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题20统计原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(江苏专用)专题19 与圆有关的计算: 这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题19 与圆有关的计算,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题19与圆有关的计算解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题19与圆有关的计算原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。