终身会员
搜索
    上传资料 赚现金
    北师大版(2019)必修第一册3函数的单调性和最值课堂作业含答案1
    立即下载
    加入资料篮
    北师大版(2019)必修第一册3函数的单调性和最值课堂作业含答案101
    北师大版(2019)必修第一册3函数的单调性和最值课堂作业含答案102
    北师大版(2019)必修第一册3函数的单调性和最值课堂作业含答案103
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学北师大版 (2019)必修 第一册3 函数的单调性和最值课时作业

    展开
    这是一份高中数学北师大版 (2019)必修 第一册3 函数的单调性和最值课时作业,共11页。

    【精编】3 函数的单调性和最值-1课堂练习

    一.填空题

    1.是定义在上的增函数,且,对于任意正数满足等式,不等式的解集为______

    2.已知函数在区间上恒有,则实数的取值范围为______.

    3.已知函数的定义域为,且,则________.

    4.设函数,则的取值范围是___________.

    5.已知函数的定义域为,则函数的定义域为_______

    6.已知函数,则__________.

    7.函数,若,则实数m的取值范围是_________.

    8.已知函数,则对任意的恒成立的充要条件是______.

    9.已知函数,则不等式的解集为____________ .

    10.已知,则的最大值为__________.

    11.已知函数在区间上的最大值是1,则实数a的取值范围是____.

    12.执行如下框图,若输出的,则输入的取值范围为___________.

    13.已知函数定义域是,则的定义域是___________.

    14.中,,则的最大值为_______________.

    15.的定义域为________.


    参考答案与试题解析

    1.【答案】.

    【解析】分析:根据题意,把不等式转化为,再结合函数的定义域和单调性,列出不等式组,即可求解.

    详解:由题意,函数满足对于任意正数满足等式

    因为,可得

    由不等式,可转化为

    又由是定义在上的增函数,可得,解得

    即不等式的解集为.

    2.【答案】

    【解析】分析:先由函数在区间上有意义,可得,从而可得函数在区间上单调递减,所以由恒成立可得,进而可求出的取值范围

    详解:因为函数在区间上有意义,

    所以,同时,且

    所以函数在区间上单调递减,

    因为函数在区间上恒有

    所以

    所以,得

    因为

    所以

    故答案为:

    3.【答案】

    【解析】分析:将x换成,有,将该方程代入已知方程消去,可得答案.

    详解:在中,将x换成,则换成x,

    将该方程代入已知方程消去,得

    故答案为:

    4.【答案】

    【解析】分析:根据题意,分类讨论求解即可.

    详解:解:当时,,解得

    时,,解得

    综上,的取值范围是.

    故答案为:

    5.【答案】

    【解析】分析:根据具体函数和抽象函数的定义域求法,即可求解.

    详解:由条件可知,函数的定义域需满足,解得:

    所以函数的定义域是.

    故答案为:

    6.【答案】10

    【解析】分析:先计算,再计算

    详解:由题意,所以

    故答案为:10.

    7.【答案】

    【解析】分析:结合函数的奇偶性和单调性进行解题即可.

    详解:解:因为为偶函数,且时,

    上单调递减,在单调递增,

    ,则

    解得.

    故答案为:

    8.【答案】.

    【解析】分析:根据题意,结合二次函数的性质,分两种情况讨论,列出不等式组即可求解.

    详解:由题意,函数

    因为对任意恒成立,即对任意的恒成立,

    时,即时,

    时,此时不等式对任意的恒成立;

    时,此时不等式,显然不符合题意.

    时,即时,

    要使得对任意恒成立,则满足

    解得

    所以使得对任意恒成立的充要条件为.

    故答案为:.

    9.【答案】

    【解析】分析:由的单调性可得结果.

    详解:因为上的增函数,所以.

    故答案为:.

    10.【答案】

    【解析】分析:先把原式平方,整理成的形式,再令进行换元,然后利用函数单调性求出最大值.

    详解:解:设

    ,则

    因为,所以

    所以

    时,单调递减,

    所以当时,取得最大值为

    所以

    故答案为:.

    11.【答案】.

    【解析】分析:由已知可得,即,得到,再求解绝对值不等式,得到,先得出的范围,进而得到a的范围.

    详解:∵函数在区间上的最大值是1,∴

    ,∵,∴,∴.

    .

    故答案为:.

    12.【答案】

    【解析】分析:分两种情况解不等式,当时,;当时,,即可求解.

    详解:由题意可得:

    时,

    因为,且上单调递增,

    所以可得

    时,,因为不成立,

    此时无解,

    综上所述:输入的取值范围为

    故答案为:.

    13.【答案】

    【解析】分析:由题意可得出,进而可解得函数的定义域.

    详解:由题意可得出,解得:

    因此,函数的定义域为

    故答案为:

    14.【答案】

    【解析】详解:令,则,即

    因为

    所以

    整理得

    化简得

    于是,得

    所以的最大值为

    故答案为:.

    15.【答案】

    【解析】分析:由题意列不等式组,即可求出定义域.

    详解:要使函数有意义,

    只需,即

    解得:

    即函数的定义域为.

    故答案为:.

     

    相关试卷

    北师大版 (2019)必修 第一册3 函数的单调性和最值当堂达标检测题: 这是一份北师大版 (2019)必修 第一册3 函数的单调性和最值当堂达标检测题,共15页。试卷主要包含了当时,记,已知函数若,则________等内容,欢迎下载使用。

    数学必修 第一册第二章 函数3 函数的单调性和最值课时练习: 这是一份数学必修 第一册第二章 函数3 函数的单调性和最值课时练习,共9页。试卷主要包含了已知函数f=______..,已知函数,则______.,已知,求______.等内容,欢迎下载使用。

    高中数学北师大版 (2019)必修 第一册3 函数的单调性和最值课时训练: 这是一份高中数学北师大版 (2019)必修 第一册3 函数的单调性和最值课时训练,共10页。试卷主要包含了定义等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        北师大版(2019)必修第一册3函数的单调性和最值课堂作业含答案1
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map