所属成套资源:2018-2022年四川省成都市近五年中考数学试卷Word附答案(5套打包)
- 2018年四川省成都市中考数学试题【含答案】 试卷 0 次下载
- 2020年四川省成都市中考数学试题【含答案】 试卷 1 次下载
- 2021年四川省成都市中考数学试卷【含答案】 试卷 2 次下载
- 2022年四川省成都市中考数学试卷【含答案】 试卷 2 次下载
2019年四川省成都市中考数学试卷【含答案】
展开这是一份2019年四川省成都市中考数学试卷【含答案】,共14页。试卷主要包含了比-3大5的数是,5×107 D,在平面直角坐标系中,将点,下列计算正确的是,分式方程的解为,如图,二次函数的图象经过点A等内容,欢迎下载使用。
2019年成都中考数学试题
A卷(共100分)
第I卷(选择题,共30分)
一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)
1.比-3大5的数是( )
A.-15 B.-8 C.2 D.8
2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )
A. B. C. D.
3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( )
5500×104 B.55×106 C.5.5×107 D.5.5×108
4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )
A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1)
【解析】一个点向右平移之后的点的坐标,纵坐标不变
5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( )
A.10° B.15° C.20° D.30°
6.下列计算正确的是( )
A. B. C. D.
7.分式方程的解为( )
A. B. C. D.
8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( )
A.42件 B.45件 C.46件 D.50件
9.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD的度数为( )
A.30° B.36° C.60° D.72°
10.如图,二次函数的图象经过点A(1,0),B(5,0),下列说法正确的是( )
A. B. C. D.图象的对称轴是直线
第II卷(非选择题,共70分)
二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)
11.若与-2互为相反数,则的值为 .
12.如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为 .
13.已知一次函数的图象经过第一、二、四象限,则的取值范围是
.
- 如图,□ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点;③以点为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点;④过点作射线交BC于点E,若AB=8,则线段OE的长为 .
三.解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)
15.(本小题满分12分,每题6分)
(1)计算:.
(2)解不等式组:
16.(本小题满分6分)
先化简,再求值:,其中.
17(本小题满分8分)
随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)求本次调查的学生总人数,并补全条形统计图;
(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;
(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.
18.(本小题满分8分)
2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
19.(本小题满分10分)
如图,在平面直角坐标系xOy中,一次函数和的图象相交于点A,反比例函数的图象经过点A.
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为B,连接OB,求△ABO的面积。
20.(本小题满分10分)
如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E,
(1)求证:
(2)若CE=1,EB=3,求⊙O的半径;
(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长。
B卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
21.估算: .(结果精确到1)
22.已知是关于的一元二次方程的两个实数根,且,则的值为 .
23.一个盒子中装有10个红球和若干个白球,这些求除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为 .
24.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△,分别连接,则的最小值为 .
25.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点称为“整点”.已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为.
二、解答题(本大题共3个小题,共30分)
26.(本小题满分8分)
随着5G技术的发展,人们对各类5G产品的使用充满期待.某公司计划在某地区销售第一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.
(1)求y与x之间的关系式;
(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可用来描述。根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?
27(本小题满分10分)
如图1,在△ABC中,AB=AC=20,tanB=,点D为BC边上的动点(点D不与点B,C重合).以点D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于F,连接CF.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DE=CF?若存在,求出此时BD的长;若不存在,请说明理由。
- (本小题满分12)
如图,抛物线y= 经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点,
(1)抛物线的函数表达式;
(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿沿直线BD翻折得到△BD,若点恰好落在抛物线的对称轴上,求点和点D 的坐标;
(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式。
参考答案
7.A8.C9.B10.D。
11.m=1. 12.EC=9. 13.k<3. 14..
三.15.(1)计算:.
(2)解不等式组:
解:
16.解:原式=.
将代入原式得
17.解:(1)总人数=(人),如图
(2)在线讨论所占圆心角
(3)本校对在线阅读最感兴趣的人
(人)
18.解:过A作CD垂线,垂足为E,如图所示.
CE=AE·tan35°,ED=AE·tan45°.CD=DE-CE.
设AE长度为x,得20=xtan45°-xtan35°
解得:x=6 答:起点拱门的高度约为6米.
19.(1)由题意:联立直线方程,可得,故A点坐标为(-2,4)
将A(-2,4)代入反比例函数表达式,有,∴
故反比例函数的表达式为
(2)联立直线与反比例函数,,消去可得,解得,当时,,故B(-8,1)
如图,过A,B两点分别作轴的垂线,交轴于M、N两点,由模型可知
S梯形AMNB=S△AOB,∴S梯形AMNB=S△AOB==
=
20.
(1)证明:连接OD.∵OC∥BD,∴∠OCB=∠DBC,∵OB=OC,∴∠OCB=∠OBC
∴∠OBC=∠DBC,∴∠AOC=∠COD,∴
(2)解:连接AC,∵,∴∠CBA=∠CAD.∵∠BCA=∠ACE,∴△CBA∽△CAE
∴,∴,∴CA=2
∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:
.
(3)如图,设AD与CO相交于点N
∵AB为⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠ANO=∠ADB=90°.
∵PC为⊙O的切线,∴∠PCO=90°,,∴∠ANO=∠PCO,∵PC∥AE,∴
∴,∴
过点O作OH⊥PQ于点H,则∠OPH=90°=∠ACB.∵PC∥CB,∴∠OPH=∠ABC,∴△OHP∽△ACB.∴,∴
,连接OQ,在Rt△OHQ中,由勾股定理得:
,∴
B卷(共50分)
一、21.6 22. 23.20个 24.
25.
如图,已知OA=3,要使△AOB的面积为,则△OAB的高度应为3(如图),当B点在这条线段上移动时,点处是以OA为底的等腰三角形是包含的整点最多,在距离的无穷远处始终会有4个整点,故整点个数有4个
二、26.(1)与之间的关系式为
(2)第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.
27
(1)∵AB=AC,∴∠B=∠ACB.∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,
∴∠BAD=∠CDE.∴△ABD∽△DCE.
(2)过点A作AM⊥BC于点M.在Rt△ABM中,设BM=4k,则AM=BM·tanB=.
由勾股定理,得,∴,∴.
∵AB=AC,AM⊥BC,∴BC=2BM=2·4k=32,∵DE∥AB,∴∠BAD=∠ADE.又∵∠ADE=∠B,
∠B=∠ACB,∴∠BAD=∠ACB.∵∠ABD=∠CBA,∴△ABD∽△CBA.∴.
∴,∵DE∥AB,∴.∴
相关试卷
这是一份2020年四川省成都市中考数学试卷-(含答案),共22页。
这是一份2023年四川省成都市中考数学试卷(含答案解析),共28页。试卷主要包含了 下列计算正确的是, 因式分解等内容,欢迎下载使用。
这是一份2023年四川省成都市中考数学试卷(含答案解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。