终身会员
搜索
    上传资料 赚现金
    4.4 数学归纳法课件PPT01
    4.4 数学归纳法课件PPT02
    4.4 数学归纳法课件PPT03
    4.4 数学归纳法课件PPT04
    4.4 数学归纳法课件PPT05
    4.4 数学归纳法课件PPT06
    4.4 数学归纳法课件PPT07
    4.4 数学归纳法课件PPT08
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第二册第四章 数列4.4* 数学归纳法教学ppt课件

    展开
    这是一份人教A版 (2019)选择性必修 第二册第四章 数列4.4* 数学归纳法教学ppt课件,共32页。PPT课件主要包含了内容索引,课前篇自主预习,课堂篇探究学习,课标阐释,思维脉络,知识梳理,答案C等内容,欢迎下载使用。

    1.了解数学归纳法的原理.(数学抽象)2.能用数学归纳法证明一些简单的数学命题.(逻辑推理)
    【激趣诱思】摸出粉笔的颜色问题:从一个盒子里摸出第一个粉笔是白色的,第二个也是白色的,第三个、第四个都是白色的,此时能判断盒子里的粉笔都是白色的吗?如果我们要想知道盒子里是不是都是白色粉笔,怎么办呢?如果盒子里粉笔的个数是无限个的话,能判断盒子里粉笔的颜色都是白的吗?当事例(正整数n)有限时,我们可以一一验证来判断命题的正确性,如果当事例(正整数n)是无限时,如何证明与正整数n有关的数学命题的正确性呢?
    数学归纳法的定义一般地,证明一个与正整数n有关的命题,可按下列步骤进行:归纳奠基→证明当n取第一个值n0(n0∈N*)时命题成立归纳递推→以“当n=k(k∈N*,k≥n0)时命题成立”为条件, 推出“当 n=k+1 时命题也成立”只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.
    微思考数学归纳法的第一步n0的初始值是否一定为1?提示 不一定.如证明n边形的内角和为(n-2)·180°,第一个值n0=3.
    例1(1)用数学归纳法证明(n+1)·(n+2)·…·(n+n)=2n×1×3×…×(2n-1)(n∈N*),“从k到k+1”左端增乘的代数式为     . 
    答案 (1)2(2k+1) 解析 令f(n)=(n+1)(n+2)…(n+n),则f(k)=(k+1)(k+2)…(k+k),f(k+1)=(k+2)(k+3)…(k+k)(2k+1)(2k+2),
    即当n=k+1时等式也成立.由①②可得对于任意的n∈N*等式都成立.
    反思感悟 用数学归纳法证明等式应注意的问题(1)首先根据待证等式的特征,明确等式的两边各有多少项,项的多少与n的取值是否有关,由n=k变化到n=k+1时等式两边会增加(或减少)多少项.(2)利用归纳假设,将n=k时的式子经过恒等变形转化到n=k+1时的式子中得到要证的结论.
    反思感悟 “归纳—猜想—证明”的一般环节
    变式训练 2数列{an}满足Sn=2n-an(Sn为数列{an}的前n项和),先计算数列的前4项,再猜想an,并证明.
    分析按照数学归纳法的步骤证明,由n=k到n=k+1的推证过程可应用放缩技巧,使问题简单化.
    反思感悟 用数学归纳法证明不等式应注意的问题(1)使用数学归纳法证明不等式问题,在证明“n=k+1时命题成立”应明确要证的不等式是什么,怎样利用归纳假设.(2)要善于利用分析法或作差比较法等不等式的方法证明.
    数学归纳法在证明整除问题中的应用典例 用数学归纳法证明:23n-1(n∈N*)能被7整除.证明 (1)当n=1时,23×1-1=8-1=7,能被7整除.(2)假设当n=k(k∈N*)时,23k-1能被7整除,那么当n=k+1时,23(k+1)-1=8×23k-1=8×23k-8+7=8(23k-1)+7,因为23k-1能被7整除,所以8(23k-1)+7能被7整除,所以当n=k+1时,命题也成立.由(1)(2)可知,23n-1(n∈N*)能被7整除.
    方法点睛使用数学归纳法证明整除问题常用的方法:将n=k+1时的式子分成两部分,一部分应用归纳假设,另一部分通过变形处理,确定其能够被某个数乘除,常用的变形技巧,加减同一个数以方便能够提取公因式.
    变式训练 (2021安徽合肥168中学高二月考)用数学归纳法证明“(3n+1)·7n-1(n∈N*)能被9整除”,在假设n=k(k∈N*)时命题成立之后,需证明n=k+1时命题也成立,这时除了用归纳假设外,还需证明的是余项(  )能被9整除.A.3·7k+6       B.3·7k+1+6C.3·7k-3D.3·7k+1-3
    答案 B解析 假设n=k时命题成立,即(3k+1)·7k-1能被9整除,那么当n=k+1时,[3(k+1)+1]·7k+1-1-[(3k+1)·7k-1]=(3k+4)·7k+1-(3k+1)·7k=[(3k+1)+3]·7k+1-(3k+1)·7k=(3k+1)·7k+1+3·7k+1-(3k+1)·7k=6·(3k+1)·7k+3·7k+1=6·[(3k+1)·7k-1]+3·7k+1+6.由(3k+1)·7k-1能被9整除可知要证上式能被9整除,还需证明3·7k+1+6也能被9整除.故选B.
    2.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从“n=k”到“n=k+1”,左边需增添的代数式是(  )A.(2k+1)+(2k+2)B.(2k-1)+(2k+1)C.(2k+2)+(2k+3)D.(2k+2)+(2k+4)答案 C解析 当n=k时,左边是共有2k+1个连续自然数相加,即1+2+3+…+(2k+1),所以当n=k+1时,左边共有2k+3个连续自然数相加,即1+2+3+…+(2k+1)+(2k+2)+(2k+3).所以左边需增添的代数式是(2k+2)+(2k+3).故选C.
    相关课件

    高中数学人教A版 (2019)选择性必修 第二册4.4* 数学归纳法图片课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第二册4.4* 数学归纳法图片课件ppt,共11页。PPT课件主要包含了4数学归纳法,情景引入,不完全归纳,完全归纳法,探究新知,不完全归纳法,数学语言,第k块骨牌倒下,数学归纳法的定义,n=k+1等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第二册第四章 数列4.4* 数学归纳法完美版ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第二册第四章 数列4.4* 数学归纳法完美版ppt课件,共37页。

    数学选择性必修 第二册4.4* 数学归纳法一等奖课件ppt: 这是一份数学选择性必修 第二册4.4* 数学归纳法一等奖课件ppt,共1页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        4.4 数学归纳法课件PPT
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map