所属成套资源:2023年中考数学一轮复习阶段测试卷(9份打包,含答案)
2023年中考数学一轮复习阶段测试卷《数据统计、分析与概率初步》(含答案)
展开这是一份2023年中考数学一轮复习阶段测试卷《数据统计、分析与概率初步》(含答案),共13页。试卷主要包含了选择题,填空题,第一象限的概率是 .等内容,欢迎下载使用。
中考数学一轮复习阶段测试卷
《数据统计、分析与概率初步》
一 、选择题
1.下列调查方式,你认为最合适的是( )
A.了解北京市每天的流动人口数,采用抽样调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式
D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式
2.数据3,1,5,1,3,4中,数据“3”出现的频数是( )
A.1 B.2 C.3 D.4
3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )
A.16人 B.14人 C.4人 D.6人
4.如图,甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是( )
A.甲户比乙户多
B.乙户比甲户多
C.甲、乙两户一样多
D.无法确定哪一户多
5.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:
评委 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
得分 | 9.8 | 9.5 | 9.7 | 9.8 | 9.4 | 9.5 | 9.4 |
若比赛的计分方法是:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为 ( )
A.9.56 B.9.57 C.9.58 D.9.59
6.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5 B.6 C.7 D.9
7.某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是( )
A.300,150,300 B.300,200,200
C.600,300,200 D.300,300,300
8.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分都是85分,方差分别是S甲2=3.8,S乙2=2.3,S丙2=6.2,S丁2=5.2,则成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
9.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( )
A.2.25 B.2.5 C.2.95 D.3
10.如图是一个转盘,转盘分成8个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向指针右边的扇形),则指针指向红色的概率是( )
A. B. C. D.
11.一个质地均匀的正四面体的四个面上依次标有数字-2、0、1、2,连续抛掷两次,朝下一面的数字分别是a、b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0)、B(2,0)、C(0,2)为顶点的三角形内(包含边界)的概率是( )
A. B. C. D.
12.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽1张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取1球是黄球
D.掷一个质地均匀的正六面体骰子,向上一面的点数是4
二 、填空题
13.如图所示的是某班全体学生在课外活动中参加各种兴趣小组的情况统计图,那么从这个班中任意挑选一人,恰为参加美术兴趣小组的学生的概率是 %.
14.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图,由图可知,成绩不低于90分的共有______人.
15.如果一组数据从小到大依次排列为x1,x2,x3,x4,x5,且x1,x2,x3的平均数为25,x3,x4,x5的平均数为35,x1,x2,x3,x4,x5的平均数是30,那么这组数据的中位数为________.
16.从数-2,-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是 .
17.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是 .
18.下表记录了某种幼树在一定条件下移植成活情况
移植总数n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
成活数m | 325 | 1336 | 3203 | 6335 | 8073 | 12628 |
成活的频率(精确到0.01) | 0.813 | 0.891 | 0.915 | 0.905 | 0.897 | 0.902 |
由此估计这种幼树在此条件下移植成活的概率约是 (精确到0.1).
三 、解答题
19.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.
(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:
7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
八年级20名学生的测试成绩条形统计图如图:
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
年级 | 平均数 | 众数 | 中位数 | 8分及以上人数所占百分比 |
七年级 | 7.5 | a | 7 | 45% |
八年级 | 7.5 | 8 | b | c |
根据以上信息,解答下列问题:
(1)直接写出上述表中的a,b,c的值;
(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?
21.抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m和常数项n的值.
(1)一共可以得到 个不同形式的二次函数;(直接写出结果)
(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.
22.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
23.某学校为了解七年级学生每周课外阅读时间,进行了抽样调查.并将调查结果分为3小时(记为A)、4小时(记为B)、5小时(记为C)、6小时(记为D)根据调查情况制作了两幅统计图,请你结合图中所给信息解答下列问题:
(1)请补全条形统计图,扇形统计图中D类所对应扇形的圆心角为 度;
(2)抽样调查阅读时间的中位数是 ,众数是 .
(3)为了让学生更好的了解“新型冠状病毒”的相关知识以及防治措施,在家做好“肺炎防治”保护好自己和家人不被感染,在本次样本中,调查结果为“D”的同学有5位来自七(1)班,分别为2位女生(记为D1,D2)3位男生(D3,D4,D5),老师准备从5位同学中选出两位共同负责在班级群中宣传肺炎的相关预防知识,请用画树状图或列表的方法求恰好选到一位男生一位女生的概率.
24.已知去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数.
(2)若把同学们去A、B、C、D四个地点的人数情况绘制成扇形统计图,则“去B地”的扇形圆心角为多少?
(3)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?说明理由.
25.为了解中考体育科目训练情况,某区从九年级学生中抽取了部分学生进行了一次中考体育科测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 ;
(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;
(3)该区九年级有学生4000名,如果全部参加这次体育测试,请估计不及格的人数为 ;
(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中小明的概率.
参考答案
1.A.
2.B
3.A
4.D.
5.C
6.B
7.D
8.C
9.B
10.B
11.D.
12.答案为:10.
13.答案为:27
14.答案为:30
15.答案为:.
16.答案为:.
17.答案为:0.9.
18.解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);
∵只有A组男人成绩不合格,∴合格人数为:50﹣5=45(人);
(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,
∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;
∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;
(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,
画树状图得:
∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,
∴他俩至少有1人被选中的概率为:0.7.
19.解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,
∴a=7,
由条形统计图可得,b=(7+8)÷2=7.5,
c=(5+2+3)÷20×100%=50%,
即a=7,b=7.5,c=50%;
(2)八年级学生掌握垃圾分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃圾分类知识较好;
(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,
∴参加此次测试活动成绩合格的学生有1200×=1080(人),
即参加此次测试活动成绩合格的学生有1080人.
20.解:(1)根据题意知,m的值有4个,n的值有4个,所以可以得到4×4=16个不同形式的二次函数.
故答案为16;
(2)∵y=x2+mx+n,∴△=m2﹣4n.
∵二次函数图象顶点在x轴上方,∴△=m2﹣4n<0,
通过计算可知,m=1,n=1,2,3,4;或m=2,n=2,3,4;或m=3,n=3,4时满足△=m2﹣4n<0,
由此可知,抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是.
21.解:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=0.75;
(2)列表法:
| A | B | C | D |
A |
| (A,B) | (A,C) | (A,D) |
B | (B,A) |
| (B,C) | (B,D) |
C | (C,A) | (C,B) |
| (C,D) |
D | (D,A) | (D,B) | (D,C) |
|
由列表可知,两次抽取卡片的所有可能出现的结果有12种,
其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2=0.5,
∵P1=0.75,P2=0.5,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
22.解:(1)∵被调查的总人数为12÷25%=48 (人),
∴C类别人数为48﹣4﹣12﹣14=18(人),补全条形统计图如图所示:
扇形统计图中D类所对应扇形的圆心角为105°故答案为:105.
(2)将48个数据从小到大排列后,处在第24、25位两个数都是5小时,因此抽样调查阅读时间的中位数是5小时,抽样调查阅读时间出现次数最多的是5小时,因此众数是5小时,
故答案为:5小时,5小时.
(3)列表如下:
| D1 | D2 | D3 | D4 | D5 |
D1 |
| (D2,D1) | (D3,D1) | (D4,D1) | (D5,D1) |
D2 | (D1,D2) |
| (D3,D2) | (D4,D2) | (D5,D2) |
D3 | (D1,D3) | (D2,D3) |
| (D4,D3) | (D5,D3) |
D4 | (D1,D4) | (D2,D4) | (D3,D4) |
| (D5,D4) |
D5 | (D1,D5) | (D2,D5) | (D3,D5) | (D4,D5) |
|
由表可知,共有20种等可能结果,其中恰好选到一位男生一位女生的结果数为12,
所以恰好抽到一名男生和一名女生的概率为.
23.
24.解:(1)12÷30%=40(人);故答案为:40人;
(2)∠α的度数=360°×0.15=54°;故答案为:54°;40×35%=14(人);
把条形统计图补充完整,如图所示:
(3)4000×0.2=800(人),故答案为:800人;
(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=0.5.
相关试卷
这是一份(通用版)中考数学总复习考点40 数据统计与分析问题(含解析),共31页。试卷主要包含了数据的收集,数据的描述,数据的分析等内容,欢迎下载使用。
这是一份中考数学一轮复习考点提高练习专题28 数据统计与分析(教师版),共21页。试卷主要包含了数据的收集,数据的分析,解答题等内容,欢迎下载使用。
这是一份中考数学专题复习 专题40 数据统计与分析问题,文件包含中考数学专题复习专题40数据统计与分析问题教师版含解析docx、中考数学专题复习专题40数据统计与分析问题学生版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。