所属成套资源:2023年中考数学一轮复习阶段测试卷(9份打包,含答案)
2023年中考数学一轮复习阶段测试卷《图形的变换》(含答案)
展开这是一份2023年中考数学一轮复习阶段测试卷《图形的变换》(含答案),共13页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
中考数学一轮复习阶段测试卷
《图形的变换》
一 、选择题
1.如图,在A,B,C,D四幅图案中,能通过图案(1)平移得到的是( ).
2.点M(1,2)关于x轴对称点的坐标为( )
A.(-1,-2) B.(-1,2) C.(1,-2) D.(2,-1)
3.如图图形中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
4.已知点P(3a﹣9,1﹣a)是第三象限的点,且横坐标、纵坐标均为整数,若P、Q关于原点对称,点Q的坐标为( )
A.(﹣3,﹣1) B.(3,1) C.(1,3) D.(﹣1,﹣3)
5.在下列四种图形变换中,本题图案不包含的变换是( )
A.位似 B.旋转 C.轴对称 D.平移
6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为( )
A.(1,﹣2) B.(﹣2,1) C.(,﹣) D.(1,﹣1)
7.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( )
A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM
8.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D/的坐标是( )
A.(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2) 或(-2,0)
9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)
C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2
10.如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60º,得到△BAE,连接ED,
则下列结论中:①AE∥BC;②∠DEB=60º;③∠ADE=∠BDC.
其中正确结论的序号是( )
A.①② B.①③ C.②③ D.只有①
11.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣2,1) B.(﹣8,4) C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
12.如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,将BO以点B为旋转中心逆时针旋转60°得到线段BO′.
下列结论:①点O与O′的距离为4;②∠AOB=150°;
③S四边形AOBO′=6+4;④S△AOC+S△AOB=6+.
其中正确的结论有( )个.
A.1 B.2 C.3 D.4
二 、填空题
13.点E(a,-5)与点F(-2,b)关于y轴对称,则a= ,b= .
14.如图,将边长为2个单位的等△ABC沿边BC向右平移1个单位得到△DEF,则四边形△BFD的周长为__________.
15.△ABC在平面直角坐标系中的位置如图所示,将△ABC绕点A顺时针旋转90°得到△AB'C′,则点B的对应点B'的坐标为 .
16.如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按相似比缩小,则点A的一个对应点的坐标是________.
17.如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k= .
18.如图,线段AB=4,M为AB中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是________.
三 、作图题
19.如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
(1)画出△A1B1C;
(2)A的对应点为A1,写出点A1的坐标;
(3)求出B旋转到B1的路线长.
四 、解答题
20.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2。
(1) 画出平移后的△A1B1C1及△A2B2C2;
(2) 平移过程中,线段AC扫过的面积是____________.
21.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点 ,旋转了 度;
(2)如果AB=7,AC=4,求中线AD长的取值范围.
22.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
23.已知,△ABC中,∠ACB=90°,AC=BC,点D为BC边上的一点.
(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;
(2)延长AD交BE于点F,求证:AF⊥BE;
(3)若AC=,BF=1,连接CF,则CF的长度为_________.
24.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.
(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.
25.我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
参考答案
1.B
2.C
3.A.
4.B
5.D.
6.D
7.B
8.C.
9.A.
10.A
11.D
12.D.
13.答案为:2,-5;
14.答案为:8
15.答案为:(4,0).
16.答案为:(3,-2)或(-3,2).
17.答案为:.
18.答案为:3.
19.解:(1)△A1B1C如图所示.
(2)由图可知A1(0,6).
(3)∵BC==,∠BCB1=90°,
弧BB1的长为=π.
20.解:(1)画图略;(2)面积是28;
21.解:(1)∵将△ACD旋转后能与△EBD重合,
∴旋转中心是点D,旋转了180度;
故答案为:D,180;
(2)∵将△ACD旋转后能与△EBD重合,
∴BE=AC=4,DE=AD,
在△ABE中,由三角形的三边关系得,AB﹣BE<AE<AB+BE,
∵AB=7,
∴3<AE<11,即3<2AD<11,
∴1.5<AD<5.5,
即中线AD长的取值范围是1.5<AD<5.5.
22.解:(1)如图1,根据折叠,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF,
∴△BDF是等腰三角形
(2)①菱形,理由:∵四边形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵FD∥BG,
∴四边形BFDG是平行四边形,
∵DF=BF,
∴四边形BFDG是菱形
②∵AB=6,AD=8,
∴BD=10.
∴OB=BD=5.
设DF=BF=x,∴AF=AD-DF=8-x.
∴在Rt△ABF中,AB2+AF2=BF2,
即62+(8-x)2=x2,解得x=,即BF=,
∴FO===,
∴FG=2FO=.
23. (1)解:旋转后的图形如图所示.
(2)证明:∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠CAD+∠ADC=90°,∠ADC=∠BDF,
∴∠BDF+∠DBF=90°,
∴∠DFB=90°,
∴AF⊥BE.
(3)作CM⊥BE于M,CN⊥AF于N.
∵∠ANC=∠BMC=90°,∠CAN=∠CBM,AC=BC,
∴△ACN≌△BCM(AAS),
∴CN=CM,
∵∠CMF=∠MFN=∠FNC=90°,
∴四边形CMFN是矩形,
∵CM=CN,
∴四边形CMFN是正方形,设CN=CM=MF=FN=a,
在Rt△BCM中,∵BC2=CM2+BM2,
∴3=a2+(a+1)2,
∴a2+a﹣1=0,
∴a=或(舍弃),
∴CF=CM=a=.
24.解:(1)连接PQ.由旋转可知:,QC=PA=3.
又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,
∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,
∴PC2=PQ2+QC2.即∠PQC=90°.
故∠BQC=90°+45°=135°.
(2)将此时点P的对应点是点P′.
由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.
又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,
又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.
因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.
故∠BPA=∠BP′C=60°+90°=150°.
25.解:(1)①如图2中,
∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,故答案为.
②如图3中,
∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC=4,故答案为4.
(2)结论:AD=BC.
理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M
∵B′D=DC′,AD=DM,
∴四边形AC′MB′是平行四边形,
∴AC′=B′M=AC,
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,
∴∠BAC=∠MB′A,∵AB=AB′,
∴△BAC≌△AB′M,
∴BC=AM,
∴AD=BC.
相关试卷
这是一份人教版中考数学复习-- 图形的变换 (训练)(附答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习阶段测试卷《圆》(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习阶段测试卷《数与式》(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。