所属成套资源:2023年中考数学一轮复习阶段测试卷(9份打包,含答案)
2023年中考数学一轮复习阶段测试卷《圆》(含答案)
展开这是一份2023年中考数学一轮复习阶段测试卷《圆》(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习阶段测试卷
《圆》
一 、选择题
1.下列说法错误的是( )
A.圆上的点到圆心的距离相等
B.过圆心的线段是直径
C.直径是圆中最长的弦
D.半径相等的圆是等圆
2.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( )
A.80° B.100° C.110° D.130°
3.在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为( )
A.E,F,G B.F,G,H C.G,H,E D.H,E,F
4.若△ABC的外接圆的圆心在△ABC的内部,则△ABC是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定
5.如图,在△ABC中,∠A=66°,点I是△ABC的内心,则∠BIC的大小为( )
A.114° B.122° C.123° D.132°
6.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为( )
A.20° B.25° C.30° D.35°
7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为( )
A.36° B.46° C.27° D.63°
8.若120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( )
A.3 B.4 C.9 D.18
9.如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为( )
A.5π B.6π C.20π D.24π
10.如图,CB是⊙O的弦,点A是优弧BAC上的一动点,且AD⊥BC于点D,AF是⊙O的直径,请写出三个一定正确的结论.
小明思考后,写出了三个结论:
①∠BAD=∠CAF;②AD=BD;③AB•AC=AD•AF.你认为小明写正确的有( )
A.0个 B.1个 C.2个 D.3个
11.如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为( )
A.1:3 B.1:π C.1:4 D.2:9
12.如图,在矩形ABCD中,AB=4,BC=6,点E是AB中点,在AD上取一点G,以点G为圆心,GD的长为半径作圆,该圆与BC边相切于点F,连接DE,EF,则图中阴影部分面积为( )
A.3π B.4π C.2π+6 D.5π+2
二 、填空题
13.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 m.
14.如图,在⊙O中,点A为弧BC的中点,若∠BAC=140°,则∠OBA的度数为 .
15.在△ABC中,∠ABC=60°,∠ACB=50°,如图所示,点I是△ABC的内心,延长AI交△ABC的外接圆于点D,则∠ICD的度数是________.
16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=____.
17.如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n= .
18.如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转,使点B的对应点D恰好落在弧AC上,点C的对应点为E,则图中阴影部分的面积为 .
三 、解答题
19.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.
(1)求证:BC为⊙O的切线;
(2)若OA=2,AB=,求线段BP的长.
20.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由.
(2)若AC=3,CD=2.5,求FG的长.
21.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.
(1)判断DE与⊙O的位置关系并说明理由;
(2)若AC=16,tan∠A=,求⊙O的半径.
22.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△PBD∽△DCA;
(3)当AB=6,AC=8时,求线段PB的长.
23.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D点,DE⊥AC于点E.
(1)判断DE与⊙O的位置关系,并证明;
(2)连接OE交⊙O于F,连接DF,若tan∠EDF=,求cos∠DEF的值.
24.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)试判断DE与⊙O的位置关系并证明;
(2)求证:BC2=2CD•OE;
(3)若tan∠C=,DE=2,求AD的长.
25.已知AM是⊙O直径,弦BC⊥AM,垂足为点N,弦CD交AM于点E,连按AB和BE.
(1)如图1,若CD⊥AB,垂足为点F,求证:∠BED=2∠BAM;
(2)如图2,在(1)的条件下,连接BD,若∠ABE=∠BDC,求证:AE=2CN;
(3)如图3,AB=CD,BE:CD=4:7,AE=11,求EM的长.
参考答案
1.B.
2.D
3.A
4.A.
5.C.
6.C.
7.A.
8.C
9.A.
10.C
11.D.
12.B.
13.答案为:0.8.
14.答案为:70°.
15.答案为:60°.
16.答案为:45°.
17.答案为:15.
18.答案为:+.
19. (1)证明:连接OB,如图,
∵AD是⊙O的直径,
∴∠ABD=90°,
∴∠A+∠ADB=90°,
∵OA=OB,
∴∠A=∠OBA,
∵∠CBP=∠ADB,
∴∠OBA+∠CBP=90°,
∴∠OBC=180°﹣90°=90°,
∴BC⊥OB,
∴BC是⊙O的切线;
(2)解:∵OA=2,
∴AD=2OA=4,
∵OP⊥AD,
∴∠POA=90°,
∴∠P+∠A=90°,
∴∠P=∠D,
∵∠A=∠A,
∴△AOP∽△ABD,
∴=,解得:BP=.
20.解:(1)FG与⊙O相切,
理由:如图,连接OF,
∵∠ACB=90°,D为AB的中点,
∴CD=BD,
∴∠DBC=∠DCB,
∵OF=OC,
∴∠OFC=∠OCF,
∴∠OFC=∠DBC,
∴OF∥DB,
∴∠OFG+∠DGF=180°,
∵FG⊥AB,
∴∠DGF=90°,
∴∠OFG=90°,
∴FG与⊙O相切;
(2)连接DF,∵CD=2.5,
∴AB=2CD=5,
∴BC=4,
∵CD为⊙O的直径,
∴∠DFC=90°,
∴FD⊥BC,
∵DB=DC,
∴BF=BC=2,
∵sin∠ABC=,即=,
∴FG=.
21.解:(1)DE与⊙O相切.理由如下:连接DO,BD,如图,
∵∠BDE=∠A,∠A=∠ADO,
∴∠ADO=∠EDB,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ODB+∠EDB=90°,即∠ODE=90°,
∴OD⊥DE,
∴DE为⊙O的切线;
(2)∵∠BDE=∠A,
∴∠ABD=∠EBD,
而BD⊥AC,
∴△ABC为等腰三角形,
∴AD=CD=AC=8,
在Rt△ABD中,∵tanA=BD:AD=3:4
∴BD=6,
∴AB=10,
∴⊙O的半径为5.
22. (1)证明:∵圆心O在BC上,
∴BC是圆O的直径,
∴∠BAC=90°,
连接OD,
∵AD平分∠BAC,
∴∠BAC=2∠DAC,
∵∠DOC=2∠DAC,
∴∠DOC=∠BAC=90°,即OD⊥BC,
∵PD∥BC,
∴OD⊥PD,
∵OD为圆O的半径,
∴PD是圆O的切线;
(2)证明:∵PD∥BC,
∴∠P=∠ABC,
∵∠ABC=∠ADC,
∴∠P=∠ADC,
∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠PBD=∠ACD,
∴△PBD∽△DCA;
(3)解:∵△ABC为直角三角形,
∴BC2=AB2+AC2=62+82=100,
∴BC=10,
∵OD垂直平分BC,
∴DB=DC,
∵BC为圆O的直径,
∴∠BDC=90°,
在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,
∴DC=DB=5,
∵△PBD∽△DCA,
∴PB:DC=BD:AC,
则PB=.
23.解:(1)DE与⊙O相切,理由:如图1,连接OD,AD,
∵AB为⊙O的直径,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵AO=BO,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE与⊙O相切;
(2)如图2,延长EO,交⊙O于N,连接DN,OD,
∵DE与⊙O相切,
∴∠EDF=∠DNF,
∴tan∠EDF=tan∠DNF=0.5,
∵∠FED=∠NED,
∴△△EDF∽△END,
∴ ==,
设EF=1,DE=2,
∵∠ODE=∠NDF=90°,
∴OD2+DE2=(OD+EF)2,
∴OD=1.5,
∴OE=2.5
∴cos∠DEF=.
24.解:(1)DE与⊙O相切.理由如下:连接OD,BD.
∵AB是直径,
∴∠ADB=∠BDC=90°,
∵E是BC的中点,
∴DE=BE=EC,
∴∠EBD=∠EDB,
又∵OD=OB,
∴∠OBD=∠ODB,
∴∠EDO=∠EBO=90°,即OD⊥DE,
∴DE与⊙O相切;
(2)证明:∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠ACB=∠BCD,
∴Rt△ABC∽Rt△BDC,
∴=,即BC2=CD•AC,
∴BC2=2CD•OE;
(3)解:在Rt△BDC中,∵DE=BE=EC,
∴BC=2DE=4,
∵tanC==,
∴设BD=x,CD=2x,
∵BD2+CD2=BC2,
∴(x)2+(2x)2=42,解得x=±(负值舍去),
∴x=,∴BD=x=,
在Rt△ABD中,∵∠ABD=∠C,
∴tan∠ABD=tan∠C,
∴=,
∴AD=BD=.
25.解:(1)∵BC⊥AM,CD⊥AB,
∴∠ENC=∠EFA=90°.
∵∠AEF=∠CEN,
∴∠BAM=∠BCD.
∵AM是⊙O直径,弦BC⊥AM,
∴BN=CN,
∴EB=EC,
∴∠EBC=∠BCD,
∴∠BED=2∠BCD=2∠BAM;
(2)连接AC,如图2,
∵AM是⊙O直径,弦BC⊥AM,
∴=,
∴∠BAM=∠CAM,
∴∠BDC=∠BAC=2∠BAM=∠BED,
∴BD=BE.
在△ABE和△CDB中,
,
∴△ABE≌△CDB,
∴AE=CB.
∵BN=CN,
∴AE=CB=2CN;
(3)过点O作OP⊥AB于P,作OH⊥BE于H,作OQ⊥CD于Q,连接OC,如图3,
则有AP=BP=AB,CQ=DQ=CD.
∵AB=CD,
∴AP=CQ,
∴OP=OQ.
∵AM垂直平分BC,
∴EB=EC,
∴∠BEA=∠CEA.
∵OH⊥BE,OQ⊥CD,
∴OH=OQ,
∴OP=OQ=OH,
∴==.又∵=,∴=.
设AO=7k,则EO=4k,
∴AE=AO+EO=11k=11,
∴k=1,
∴AO=7,EO=4,
∴AM=2AO=14,
∴EM=AM﹣AE=14﹣11=3.
相关试卷
这是一份中考数学一轮复习培优训练:《圆》 (含答案),共39页。试卷主要包含了已知等边△ABC内接于⊙O,感知定义,已知,如图等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习阶段测试卷《图形认识初步》(含答案),共10页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习阶段测试卷《图形的变换》(含答案),共13页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。