所属成套资源:中考数学二轮专题复习《函数压轴题》专项练习(含答案)
中考数学二轮专题复习《函数压轴题》专项练习六(含答案)
展开
这是一份中考数学二轮专题复习《函数压轴题》专项练习六(含答案),共14页。
中考数学二轮专题复习《函数压轴题》专项练习六1.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标. 2.如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围. 3.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)在抛物线的对称轴上有一点M,使MD+ME的值最小,试求出点M的坐标,并求MD+ME的最小值. 4.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0)、B(2,0)两点,与y轴的交点为C,连接AC、BC,D为线段AB上的动点,DE∥BC交AC于E,A关于DE的对称点为F,连接DF、EF.(1)求抛物线的解析式;(2)EF与抛物线交于点G,且EG:FG=3:2,求点D的坐标;(3)设△DEF与△AOC重叠部分的面积为S,BD=t,直接写出S与t的函数关系式. 5.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标. 6.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
0.参考答案1.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN=,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).2.解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m, m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+n过点E,A′,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,]∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.3.解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得:t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得:t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)如图所示:作点D(3,10)关于对称轴x=4的对称点D1(5,10),连接D1E交对称轴x=4于点M,此时MD+ME的值最小,设直线D1E的解析式为:y=kx+b(k≠0),将E(0,6),D1(5,10)代入得:,解得:,故直线D1E的解析式为:y=x+6(0≤x≤5),令x=4,解得:y=,∴M(4,),此时,MD+ME=ME+MD1=D1E=.4.解:(1)将A(﹣3,0)和B(2,0)代入y=ax2+bx﹣4,∴,解得:,∴抛物线的解析式为:y=x2+x﹣4;(2)令x=0代入y=x2+x﹣4,∴y=﹣4,∴C(0,﹣4),∴OC=4,∵OA=3,∴由勾股定理可求得:AC=5,∵OB=2,∴AB=OA+OB=5,∴∠ACB=∠ABC,∵A与F关于DE对称,∴∠ADE=∠AED,∴∠ADE=∠FED,∴AB∥EF,设点G的坐标为(a, a2+a﹣4),∴E的纵坐标为a2+a﹣4,设直线AC的解析式为:y=kx+b,把A(﹣3,0)和C(0,﹣4)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣4,把y=a2+a﹣4代入y=﹣x﹣4,∴x=﹣a2﹣a,∴E的坐标为(﹣a2﹣a,a2+a﹣4),∴EG=a﹣(﹣a2﹣a)=a2+a,过点E作EH⊥x轴于点H,如图2,∴sin∠EAH=,∴=,∴AE=HE=(4﹣a2﹣a),∴AE=EF=(4﹣a2﹣a),∵EG:FG=3:2,∴EG=EF,∴a2+a=×(4﹣a2﹣a),∴解得a=﹣3或a=1,当a=﹣3时,此时G与A重合,∴a=﹣3不合题意,舍去,当a=1时,∴AD=AE=(4﹣a2﹣a)=,∴D的坐标为(,0);(3)如图2,当≤t<5时,此时△DEF与△AOC重叠部分为△DEF,∵BD=t,∴AD=AB﹣BD=5﹣t,∴AE=AD=5﹣t,过点E作EH⊥x轴于点H,由(2)可知:sin∠EAH=,∴=,∴EH=(5﹣t),∴S=AD•EH=(5﹣t)2,如图3,当2≤t<时,过点D左DI⊥EF于点I,设EF与y轴交于点M,DF与y轴交于点N,此时△DEF与△AOC重叠部分为四边形EMND,∵AE=AD=5﹣t,∴CE=AC﹣AE=t,∵EF∥AB,△CEM∽△CAO,∴=,∴,∴EM=t,∵AE=EF,∴MF=EF﹣EM=5﹣t,∵∠CAB=∠EFD,∴tan∠EFD=tan∠CAB=,∴,∴MN=(5﹣t),∵DI=EH=(5﹣t),∴S=DI•EF﹣MF•MN=×(5﹣t)2﹣×(5﹣t)2=﹣t2+t﹣,如图4,当0<t<2时,设DE与y轴交于点M,EF与y轴交于点N,此时△DEF与△AOC重叠部分为△EMN,∵AE=5﹣t,∴CE=t,∵EF∥AB,∴△CEN∽△CAO,∴=,∴,∴EN=t,∵∠MEN=∠ADE=∠ABC,∴tan∠MEN=tan∠ABC==2,∴,∴MN=2EN=t,∴S=EN•MN=×t×t=t2,综上所述,当0<t<2时,S=t2;当2≤t<时,S=﹣t2+t﹣;当≤t<5时,S=(5﹣t)2.5.解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4; (2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=+,x2=﹣,∴P3(+,﹣4),P4(﹣,﹣4);②当PQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(+,﹣4),P4(﹣,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).6.解:(1)点A的坐标是(2,0),抛物线的对称轴是直线x=﹣1,则点B(﹣4,0),则函数的表达式为:y=a(x﹣2)(x+4)=a(x2+2x﹣8),即:﹣8a=﹣2,解得:a=,故抛物线的表达式为:y=x2+x﹣2;(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x﹣2,则tan∠ABC=,则sin∠ABC=,设点D(x,0),则点P(x,x2+x﹣2),点E(x,x﹣2),∵PE=OD,∴PE=(x2+x﹣2﹣x+2)=(﹣x),解得:x=0或﹣5(舍去x=0),即点D(﹣5,0)S△PBE=×PE×BD=(x2+x﹣2﹣x+2)(﹣4﹣x)=;(3)由题意得:△BDM是以BD为腰的等腰三角形,只存在:BD=BM的情况,BD=1=BM,则yM=﹣BMsin∠ABC=﹣,则xM=﹣4+,故点M(﹣4+,﹣).
相关试卷
这是一份中考数学二轮专题复习《函数压轴题》专项练习四(含答案),共14页。
这是一份中考数学二轮专题复习《函数压轴题》专项练习十(含答案),共12页。
这是一份中考数学二轮专题复习《函数压轴题》专项练习三(含答案),共13页。试卷主要包含了∴y=-x2+2x+3,故C.等内容,欢迎下载使用。