中考数学二轮专题复习《函数压轴题》专项练习四(含答案)
展开中考数学二轮专题复习
《函数压轴题》专项练习四
1.如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.
(1)写出点D的坐标 .
(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.
①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;
②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,
当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;
③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.
2.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.
3.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A
(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
4.已知抛物线L的解析式为y=ax2﹣11ax﹣24a(a<0),如图1抛物线L与x轴交于B、C两点(点B在点C的左侧),抛物线L上另有一点A在第一象限内,且∠BAC=90°.
(1)求点B、点C的坐标;
(2)连接OA,若OA=AC.
①求此时抛物线的解析式;
②如图2,将抛物线L沿x轴翻折后得抛物线L′,点M为抛物线LA、C两点之间一动点,且点M的横坐标为m,过动点M作x轴的垂线h与抛物线L′交于点M′.设四边形AMCM′的面积为S.试确定S与m之N的函数关系式,并求出当m为何值时.S有最大值,最大值为多少?
5.平面直角坐标系中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).
(1)若一次函数y1=kx+b的图象经过A、B两点.
①当a=1、d=﹣1时,求k的值;
②若y随x的增大而减小,求d的取值范围;
(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;
(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.
6.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17.若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.
0.参考答案
1.解:(1)∵y1=(x﹣2)(x﹣4)=x2﹣6x+8=(x﹣3)2﹣1,
∴顶点D的坐标为(3,﹣1).
(2)①∵点P在对称轴l上,位于点C上方,且CP=2CD,
∴点P的坐标为(3,2),
∴二次函数y1=(x﹣2)(x﹣4)与y2=ax2+bx+c的图象的对称轴均为x=3,
∵点A、B关于直线x=3对称,
∴二次函数y2=ax2+bx+c(a≠0)的图象过点B.
②∵二次函数yy2=ax2+bx+c的顶点坐标P(3,2),
且图象上有且只有三个点到x轴的距离等于2d,
∴2d=2,解得:d=1.
令y1=(x﹣2)(x﹣4)= x2﹣6x+8中y1=±1,
即x2﹣6x+8=±1,解得:x1=3﹣,x2=3+,x3=3,
∴点R的坐标为(3﹣,1)、(3+,1)或(3,﹣1).
故答案为:(3﹣,1)、(3+,1)或(3,﹣1).
③设过点M平行x轴的直线交对称轴l于点K,
直线l也是二次函数y2=ax2+bx+c(a≠0)的图象的对称轴.
∵二次函数y2=ax2+bx+c过点A、B,且顶点坐标为P(3,2),
∴二次函数y2=﹣2(x﹣2)(x﹣4).
设N(n,0),则H(n,﹣2(n﹣2)(n﹣4)),Q(n,(n﹣2)(n﹣4)),
∴HN=2(n﹣2)(n﹣4),QN=(n﹣2)(n﹣4),∴=2,即=.
∵△GHN∽△EHQ,∴.
∵G、H关于直线l对称,
∴KG=KH=HG,∴.
设KG=t(t>0),则G的坐标为(3﹣t,m),E的坐标为(3﹣2t,m),
由题意得:,解得:或(舍去).
故当△GHN∽△EHQ,实数m的值为1.
2.解:(1)设OA所在直线的函数解析式为y=kx,
∵A(2,4),∴2k=4,∴k=2,
∴OA所在直线的函数解析式为y=2x.
(2)①∵顶点M的横坐标为m,且在线段OA上移动,
∴y=2m(0≤m≤2).∴顶点M的坐标为(m,2m).
∴抛物线函数解析式为y=(x﹣m)2+2m.
∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2).
∴点P的坐标是(2,m2﹣2m+4).
②∵PB=m2﹣2m+4=(m﹣1)2+3,
又∵0≤m≤2,∴当m=1时,PB最短.
(3)当线段PB最短时,此时抛物线的解析式为y=(x﹣1)2+2
即y=x2﹣2x+3.
假设在抛物线上存在点Q,使S△QMA=S△PMA.
设点Q的坐标为(x,x2﹣2x+3).
①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C,
∵PB=3,AB=4,∴AP=1,∴OC=1,∴C点的坐标是(0,﹣1).
∵点P的坐标是(2,3),∴直线PC的函数解析式为y=2x﹣1.
∵S△QMA=S△PMA,∴点Q落在直线y=2x﹣1上.
∴x2﹣2x+3=2x﹣1.解得x1=2,x2=2,即点Q(2,3).
∴点Q与点P重合.
∴此时抛物线上不存在点Q(2,3),使△QMA与△APM的面积相等.
②当点Q落在直线OA的上方时,
作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E,
∵AP=1,∴EO=DA=1,∴E、D的坐标分别是(0,1),(2,5),
∴直线DE函数解析式为y=2x+1.
∵S△QMA=S△PMA,∴点Q落在直线y=2x+1上.
∴x2﹣2x+3=2x+1.解得:x1=2+,x2=2﹣.
代入y=2x+1得:y1=5+2,y2=5﹣2.
∴此时抛物线上存在点Q1(2+,5+2),Q2(2﹣,5﹣2)
使△QMA与△PMA的面积相等.
综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2﹣,5﹣2)
使△QMA与△PMA的面积相等.
3.解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣2),
把C(0,4)代入:4=﹣2a,a=﹣2,
∴y=﹣2(x+1)(x﹣2),
∴抛物线的解析式为:y=﹣2x2+2x+4;
(2)如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,
∴S=S梯形+S△PDB=m(﹣2m2+2m+4+4)+(﹣2m2+2m+4)(2﹣m),
S=﹣2m2+4m+4=﹣2(m﹣1)2+6,
∵﹣2<0,
∴S有最大值,则S大=6;
(3)如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,
理由是:设直线BC的解析式为:y=kx+b,
把B(2,0)、C(0,4)代入得:
,解得:,
∴直线BC的解析式为:y=﹣2x+4,
设M(a,﹣2a+4),过A作AE⊥BC,垂足为E,则AE的解析式为:y=x+,
则直线BC与直线AE的交点E(1.4,1.2),
设Q(﹣x,0)(x>0),
∵AE∥QM,∴△ABE∽△QBM,∴①,
由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,
由①②得:a1=4(舍),a2=,当a=时,x=,∴Q(﹣,0).
4.解:(1)当y=0时,ax2﹣11ax﹣24a=0,解得x1=3,x3=8,
而点B在点C的左侧,所以B(3,0),C(8,0);
(2)①作AD⊥BC于D,如图1,
∵AO=AC,
∴OD=CD=OC=4,∴BD=OD﹣OB=4﹣3=1,
∵∠BAC=90°,∴∠ABD﹣∠ACB=90°,
而∠ABD﹣∠BAD=90°,
∴∠BAD=∠ACB,
∴Rt△ABD∽Rt△CAD,
∴BD:AD=AD:CD,即1:AD=AD:4,解得AD=2,
∴A(4,2),
把A(4,2)代入y=ax2﹣11ax﹣24a
得16a﹣44a﹣24a=2,解得a=﹣,
∴抛物线解析式为y=﹣x2﹣5.5x﹣12;
②作AD⊥BC于D,如图2,设M(m,﹣m2﹣5.5m﹣12),
∵抛物线L沿x轴翻折后得抛物线L′,且过点M作x轴的垂线h与抛物线L′交于点M′,
∴M点和M′关于x轴对称,MM′交x轴于点E,
∴MM′=2ME=﹣m2﹣11m﹣24,
∴S=S△AMM′﹣S△CMM′=CD×MM′=×4×(﹣m2﹣11m﹣24)=﹣2m2﹣22m﹣48
=﹣2(m﹣5.5)2﹣12.5,
当x=5.5时,S有最大值,最大值为12.5.
5.解:(1)①当a=1、d=﹣1时,m=2a﹣d=3,
所以二次函数的表达式是y=﹣x2+x+6.
∵a=1,
∴点A的横坐标为1,点B的横坐标为3,
把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,
∴A(1,6),B(3,0).
将点A和点B的坐标代入直线的解析式得:
,解得:,
所以k的值为﹣3.
②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),
∴当x=a时,y=﹣(a﹣m)(a+2);当x=a+2时,y=﹣(a+2﹣4)(a+4),
∵y1随着x的增大而减小,且a<a+2,
∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,
又∵2a﹣m=d,
∴d的取值范围为d>﹣4.
(2)∵d=﹣4且a≠﹣2、a≠﹣4,2a﹣m=d,
∴m=2a+4.
∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.
把x=a代入抛物线的解析式得:y=a2+6a+8.
把x=a+2代入抛物线的解析式得:y=a2+6a+8.
∴A(a,a2+6a+8)、B(a+2,a2+6a+8).
∵点A、点B的纵坐标相同,
∴AB∥x轴.
(3)线段CD的长度不变.
∵y=﹣x2+(m﹣2)x+2m过点A、点B,2a﹣m=d,
∴y=﹣x2+(2a﹣d﹣2)x+2(2a﹣d).
∴yA=﹣a2+(2﹣d)a﹣2d,yB=a2+(2﹣d)a﹣4d﹣8.
∵把a=0代入yA=﹣a2+(2﹣d)a﹣2d,得:y=﹣2d,
∴C(0,﹣2d).
∵点D在y轴上,即a+2=0,
∴a=﹣2,.
把a=﹣2代入yB=a2+(2﹣d)a﹣4d﹣8得:y=﹣2d﹣8.
∴D(0,﹣2d﹣8).
∴DC=|﹣2d﹣(﹣2d﹣8)|=8.
∴线段CD的长度不变.
6.解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.
∵对称轴x=﹣=1,∴b=﹣2a ②.
∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,
由①②③解得,a=﹣,b=1,c=4,
∴抛物线的解析式为y=﹣x2+x+4;
(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,
则FH=﹣t2+t+4,FG=t,
∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,
S△OFC=OC•FG=×4×t=2t,
∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.
令﹣t2+4t+12=17,
即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,
∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;
(3)设直线BC的解析式为y=kx+n(k≠0),
∵B(4,0),C(0,4),
∴,解得,
∴直线BC的解析式为y=﹣x+4.
由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),
又点E在直线BC上,则点E(1,3),于是DE=﹣3=.
若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,
设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).
①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,
由﹣m2+2m=,解得:m=1或3.
当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).
②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,
由m2﹣2m=,解得m=2±,经检验适合题意,
此时P2(2+,2﹣),P3(2﹣,2+).
综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).
(3)∵DE∥PQ,∴当DE=PQ时,以D、E、P、Q为顶点的四边形是平行四边形,
∵y=﹣x2+x+4,∴D(1,),
∵lBC:y=﹣x+4,∴E(1,3),∴DE=﹣3=,
设点F的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4),
∴|﹣m+4+m2﹣m﹣4|=,∴m2﹣2m=或m2﹣2m=﹣,
∴m=1,m=3,m=2+,m=2﹣,经检验,当m=1时,线段PQ与DE重合,故舍去.
∴P1(3,1),P2(2+,2﹣),P3(2﹣,2+).
中考数学二轮专题复习《函数压轴题》专项练习十(含答案): 这是一份中考数学二轮专题复习《函数压轴题》专项练习十(含答案),共12页。
中考数学二轮专题复习《函数压轴题》专项练习三(含答案): 这是一份中考数学二轮专题复习《函数压轴题》专项练习三(含答案),共13页。试卷主要包含了∴y=-x2+2x+3,故C.等内容,欢迎下载使用。
中考数学二轮专题复习《函数压轴题》专项练习七(含答案): 这是一份中考数学二轮专题复习《函数压轴题》专项练习七(含答案),共13页。试卷主要包含了联立抛物线与ED,得,解得等内容,欢迎下载使用。