初中数学北师大版八年级下册1 认识分式教案设计
展开认识分式
【知识与技能】
理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.
【过程与方法】
在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.
【情感态度】
进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.
【教学重点】
理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.
【教学难点】
在分式有意义的条件下,分式值为0的字母的取值情况.
一、情境导入,初步认识
问题 一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.
二、思考探究,获取新知
问题1刚才大家通过探讨,获得到 这样的式子,它们是整式吗?如果不是,区别在哪里?
思考1(1)长方形的面积为10cm2,长为7cm,宽为 ;若长方形的面积为S,长为a,则宽应为 ;
(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为 .
思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与有什么共同点?谈谈你的看法.
【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.
分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.
问题2(1)使分式 有意义,则x的取值有什么要求?
(2)使分式A/B有意义,所需要的条件是什么?
【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.
【归纳结论】使分式A/B有意义时,必有B≠0.
三、典例精析,掌握新知
例1指出下列各式中的整式与分式:
【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.
例2填空:
(1)当x 时,分式有意义?
(2)当b 时,分式有意义?
(3)当x,y满足关系 时,分式有意义?
(4)当x 时,分式 有意义?
解:(1)由题意有:3x≠0,故x≠0,所以当x≠0时,分式有意义;(2)由题意有:5-3b≠0,故b≠5/3,所以当b≠5/3时,分式有意义;(3)由题意有x-y≠0,故x≠y,所以当x≠y时,分式有意义;(4)由题意有x2+1≠0,因为x2≥0,x2+1≥1,故x为任何数时,分式有意义.
【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.
例3什么条件下,下列分式的值为0?
(1) ;(2) ;(3) .
解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x≠0,所以当x=1时,分式的值为0;
(2)由题意有:2m-3n=0,∴m=n,∴m+n=n,又m+n≠0,即n≠0,∴n≠0,从而在m=n≠0时,分式的值为0;
(3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x2-x-6=-6≠0,当x=3时,x2-x-6=9-3-6=0,故使分式的值为0时,x的值为x=0.
【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.
四、师生互动,课堂小结
1.这节课你有哪些收获?
2.通过这节课的学习,你还有哪些疑问?与同伴交流.
【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.
1.布置作业:
2.完成练习册中本课时的练习.
这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.
分式的基本性质
【知识与技能】
掌握分式的基本性质,能依据分式的性质进行约分运算.
【过程与方法】
通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分.
【情感态度】
进一步增强学生的创新思维能力.
【教学重点】
理解并掌握分式的基本性质,能用分式的性质进行分式的约分.
【教学难点】
在分式的约分时应注意将分子、分母中的多项式进行分解因式.
一、情境导入,初步认识
分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.
思考 下列从左到右的变形成立吗?为什么?
【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.
二、思考探究,获取新知
(一)分式的基本性质
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
即 (A、B、C均为整式,且C≠0)
试一试
【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分作好铺垫.
2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:
3.不改变分式的值,将下列分式中分子或分母的系数化为整数:
【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.
(二)分式的约分
分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由,就是分式的约分.
最简分式:分子与分母中没有公因式的分式叫做最简分式.
分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.
【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.
试一试
4.约分:
【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.
三、师生互动,课堂小结
1.通过本节课的学习,你有哪些收获?
2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?
【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分,在约分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P132练习以及习题15.1中的题,以帮助学生进一步掌握.
1.布置作业:
2.完成练习册中本课时的练习.
“分式的基本性质”在分式教学中占有重要的地位,它是约分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.
教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
初中数学20.2 函数教案: 这是一份初中数学20.2 函数教案,共16页。教案主要包含了引入,讲授新知,课堂小结等内容,欢迎下载使用。
初中数学北师大版八年级下册3 公式法教学设计及反思: 这是一份初中数学北师大版八年级下册3 公式法教学设计及反思,共12页。
初中数学北师大版八年级下册2 提公因式法教学设计及反思: 这是一份初中数学北师大版八年级下册2 提公因式法教学设计及反思,共7页。教案主要包含了 教材分析,本课内容及重点,学法分析,教学过程等内容,欢迎下载使用。