终身会员
搜索
    上传资料 赚现金

    专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版)

    立即下载
    加入资料篮
    专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版)第1页
    专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版)第2页
    专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版)第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版)

    展开

    这是一份专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版),共17页。试卷主要包含了确定弧所对的圆心;,利用规则图形的面积进行加减等内容,欢迎下载使用。


    专题02与圆有关的计算求阴影部分的面积

    选题介绍

    本题型在河南省近五年的中招试卷中考了5次,其中2021年出题方向为求弧长,其余年份均为求阴影部分面积。该题位于填空题的第14题,分值3分。本题计算量大,难度系数中等偏上,得分率较低。本题属于几何范畴,一般涉及三角形、四边形、扇形的面积,多以平移、对称或旋转为背景,对组合图形所形成阴影部分的面积进行计算。若所求阴影部分的图形是规则图形,则直接用公式法计算。若所求阴影部分的图形是不规则图形,则采用转化思想将不规则图形转化为规则图形。常用的方法有和差法、割补法等积交换法。

    主要解题思路1、确定弧所对的圆心(找圆心);

    2连接圆心与弧上的点(找扇形);

    3、利用规则图形的面积进行加减。

    真题展现

    2022年河南中招填空题第14

    1. 如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O'处,得到扇形A'O'B',若∠O=90°,OA=2,则阴影部分的面积为           .

    【答案】+

    【解析】本题主要考察了如何利用扇形的面积公式求阴影部分的面积。本题的关键在于如何利用规则图形的面积进行加减,求不规则图形的面积。对于该题,连接用扇形的OT',构建出扇形,即得阴影部分的面积。

    详解】解:如图,

    O'A'于点T,连接OT

    OT=OBOO'=O'B,

    OT=2OO'.

    ∵∠OO'T=90°,

    O'TO=30°,TOO'=60°,

    O'T=OTcos30°

    S阴影=S扇形O'A'B'-S扇形OTB-SOO'T=—(×1×=+

    总结本题的关键在于如何利用规则图形的面积进行加减,求不规则图形的面积。

    2021年河南中招填空题第15

    15.如图,在扇形中,平分交弧于点.点为半径上一动点若,则阴影部分周长的最小值为         

    【答案】+

    【解析】本题考查了弧长公式,动点中的最短距离问题,如何判断E点位置是解题的关键,可以利用找对称点的方法确定最短距离的点位置,然后用弧长加上两线段的最短距离即为所求图形的周长。

    详解解:如图

    作点D关于OB的对称点D'

    连接D'COB于点E,连接E'DOD',此时E'C+E'D最小,

    即:E'C+E'D=D'C

    由题意得,∠COD=DOB=BOD'=30°

    ∴∠COD'=90°

    CD'===

    的长l==

    ∴阴影部分的周长最小值为+

    故答案为+

    总结本题考查了弧长公式,动点中的最短距离问题,如何判断E点位置是解题的关键,可以利用找对称点的方法确定最短距离的点位置。

    2019年河南中招填空题第14

    14.如图,在扇形 AOB 中, AOB 120 ,半径OC 交弦 AB 于点 D ,且OC OA.若


    OA

     

     

     

     

     


    则阴影部分的面积为          


    【答案】

    【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD的面积与扇形OBC的面积之和再减去△BDO的面积,本题得以解决.

    【解答】解:作OEAB于点F

    ∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OCOAOA=2

    ∴∠AOD=90°,∠BOC=90°,OAOB

    ∴∠OAB=∠OBA=30°,

    ODOA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF

    BD=2,

    ∴阴影部分的面积是:SAOD+S扇形OBCSBDO+π

    故答案为:

    【总结】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.

    2018年河南中招填空题第15

    14. 如图,在△ABC中,∠ACB=90°AC=BC=2,将△ABCAC的中点D逆时针旋转90°得到△A'BC',其中点B的运动路径为,则图中阴影部分的面积为_____.

    【答案】

    【解析】

    连接DBDB,先利用勾股定理求出DB′=AB′=,再根据S=S扇形BDBSDBCSDBC,计算即可.

    【详解】ABCAC的中点D逆时针旋转90°得到△A'BC',此时点A在斜边AB上,CAAB

    连接DBDB

    DB′=AB′=

    S=

    故答案为

    总结本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

    模拟演练

    1.如图,在等腰中,,斜边的中点为,分别以点为圆心,以的长为半径画弧,分别与相交,则图中的阴影部分的面积为   (结果保留

    答案

    【解析】本题主要考察求三角形的面积和扇形的面积公式,利用三角形的面积减去扇形的面积即得阴影部分的面积。

    详解解:在等腰中,

    是斜边的中点,

    阴影部分面积为:

    故答案为:

    总结正确运用扇形的面积公式是解本题的关键。

    2. 如图,△ABC为等腰直角三角形,将绕点C顺时针旋转得,此时点B的对应点落在的对称轴上,若,则线段扫过的阴影面积为________

    【答案】

    【解析】如图,根据求解即可.

    【详解】解:连接BD

    D在等腰直角三角形ABC的对称轴上,

    DB=DC

    中,

    由旋转可得,DC=BC

    =

    故答案为:

    总结本题考查了图形的旋转变换,扇形的面积,轴对称的性质,等腰直角三角形的性质,等边三角形的判定和性质,把不规则图形的面积转化为三角形的面积和扇形的面积问题是解本题的关键.

    3. 如图,点BC上,连接ADABACBC.若所在的圆的半径为3,则阴影部分的面积为_________

    【答案】

    【解析】求弓形面积,利用所在的扇形的面积,再减去三角形的面积,因此构造弓形所属扇形,用

    求出问题.

    【详解】解:设点O所在圆的圆心,连接OBOC

    如图所示,

    是等边三角形,

    故答案为:

    总结本题考查弓形面积,利用所在的扇形的面积,再减去三角形的面积,解题关键熟记公式

    4. 如图,,以为圆心,长为半径作于点,则图中阴影部分的面积为______

    【答案】

    【解析】

    根据直角三角形的性质得到,根据扇形和三角形的面积公式即可得到结论.

    【详解】解:在中,

    由勾股定理得,

    阴影部分面积

    故答案为:

    总结本题考查了扇形面积的计算,含角的直角三角形的性质,正确地识别图形是解题的关键.

    5. 如图,一只羊被4米长的绳子拴在长为3米,宽为2米的长方形封闭围墙的一个顶点上,则这头羊活动范围的最大面积是______

    【答案】

    【解析】根据题意可知,该羊活动的范围有三部分构成:一是半径为4、圆心角为270°的扇形区域,二是半径为2、圆心角为90°的扇形区域,三是半径为1、圆心角为90°的扇形区域,由扇形的面积公式即可作答.

    【详解】根据绳子的长度以及矩形的长和宽的长度,可知羊活动的区域,如图所示,

    则羊活动的范围为:(平方米),

    故答案为:

    总结本题考查了扇形面积的计算公式,解题时关键是要根据绳子的长度以及矩形的形状找到羊可以活动的范围.

    6. 有一张矩形纸片,其中,以为直径的半圆,正好与对边相切,如图(甲),将它沿折叠,使点落在上,如图(乙),这时,半圆还露在外面的部分(阴影部分)的面积是_______.

    【答案】

    【解析】如图,露在外面部分的面积可用扇形ODK与△ODK的面积差来求得.在RtADC中,可根据AD即圆的直径和CD的关系,求出∠DAC的度数,进而得出∠ODA和∠ODK的度数,即可求得△ODK和扇形DOK的面积,由此可求得阴影部分的面积.

    【详解】如图,点O为半圆的圆心,过点O作作OHDKH

    ∵以AD为直径的半圆,正好与对边BC相切,

    AD=2CD

    ∵∠C=90º,

    ∴∠DAC=30º,

    ∴∠ODK=30º,

    OD=OK

    ∴∠DOK=120º,∠ODK=OKD=30º

    ∴扇形ODK的面积为

    ∵∠ODK=OKD=30º,OD=2

    OH=1DH=KH=

    DK=

    △ODK的面积为

    ∴半圆还露在外面的部分(阴影部分)的面积是

    故答案为:

    总结本题考查矩形的性质、折叠问题、扇形面积的计算、含30度角的直角三角形、等腰三角形的性质、切线的性质,熟练掌握这些知识的运用是解答的关键.

    7. 如图,水平地面上有一面积为30πcm2的扇形AOB,半径OA=6cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为 __________

    【答案】10πcm

    【解析】会利用扇形面积公式进行计算;牢记弧长的计算公式

    【详解】试题分析:设优弧AB的长是.根据扇形的面积公式,得:cm).

    故答案为10πcm

    总结】考点:1.扇形面积的计算;2.弧长的计算.

    8. 如图所示,在矩形ABCD中,如图ABBC,以点C为圆心,CB的长为半径的圆分别交AD边于点E,交CD边的延长线于点F.若AEDF弧EF的长为π,则DE的长为 _____

    【答案】

    【解析】

    连接CE,则CB=CE=CF CB=R,则CE=CF=DA,推出∠DCE=45°,根据弧长公式求出R,然后利用等腰直角三角形求出DE

    【详解】解:连接CE

    CBCECF

    CBR

    ∵四边形ABCD是矩形,

    CECFDA

    AEDF

    DEDC

    ∴∠DCE45°,

    的长为π

    π

    解得R4

    RtDCE中,

    DECEsin 45°=42

    故答案为:2

    总结本题考查了矩形的性质,勾股定理,弧长公式等知识点,能根据弧长公式求出BM的长是解此题的关键.

    9. 如图,在由边长为1的小正方形组成的网格中,一条弧经过格点(网格线的交点)ABD,点C为弧BD上一点.若,则弧CD的长为__________

    【答案】

    【解析】作线段AD和线段AC的垂直平分线交于点O,即格点O为弧AD所在圆的圆心,连接OCOD,根据题意,结合勾股定理,得出的长,再根据圆周角定理,得出,再根据弧长公式进行计算即可.

    【详解】解:如图,作线段AD和线段AC的垂直平分线交于点O,即格点O为弧AD所在圆的圆心,连接OCOD

    根据题意,可得:

    ∴弧CD的长为:

    故答案为:

    总结本题考查了线段的垂直平分线、勾股定理、圆周角定理、弧长公式,根据题意并结合图形添加适当的辅助线是解本题的关键.圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半;弧长公式:为弧所对的圆心角的度数;为半径)

    10. 如图,菱形ABCD的对角线ACBD相交于点OAC=16,BD=12,以AB为直径作一个半圆,则图中阴影部分的面积为___________.

    【答案】π﹣24

    【解析】首先根据菱形的性质求出AOBO的值是多少再根据勾股定理求出AB的值是多少然后根据圆的面积公式求出以AB为直径的半圆的面积再用它减去三角形ABO的面积求出图中阴影部分的面积为多少即可.

    【详解】AC=16,BD=12,ACBDAB===10,

    ∴图中阴影部分的面积为

     π×2×﹣(16÷2)×(12÷2)÷2

    ×﹣8×6÷2

    =π﹣24.

    故答案为π﹣24.

    总结本题主要考查了菱形的性质以及三角形、圆的面积的求法要熟练掌握.


     

    相关试卷

    专题09 中考20题 不等式、方程与函数的综合讨论题型—2023年中考数学必考特色题型讲练(河南专用)(解析版):

    这是一份专题09 中考20题 不等式、方程与函数的综合讨论题型—2023年中考数学必考特色题型讲练(河南专用)(解析版),共22页。

    专题05 尺规作图与平面几何结合题型—2023年中考数学必考特色题型讲练(河南专用)(解析版):

    这是一份专题05 尺规作图与平面几何结合题型—2023年中考数学必考特色题型讲练(河南专用)(解析版),共24页。

    专题04 动点问题与函数图形结合题型—2023年中考数学必考特色题型讲练(河南专用)(原卷版):

    这是一份专题04 动点问题与函数图形结合题型—2023年中考数学必考特色题型讲练(河南专用)(原卷版),共8页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题02 与圆有关的计算求阴影部分的面积—2023年中考数学必考特色题型讲练(河南专用)(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map