![【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(原卷版) 第1页](http://www.enxinlong.com/img-preview/2/3/13971000/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(原卷版) 第2页](http://www.enxinlong.com/img-preview/2/3/13971000/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(原卷版) 第3页](http://www.enxinlong.com/img-preview/2/3/13971000/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(解析版) 第1页](http://www.enxinlong.com/img-preview/2/3/13971000/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(解析版) 第2页](http://www.enxinlong.com/img-preview/2/3/13971000/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(解析版) 第3页](http://www.enxinlong.com/img-preview/2/3/13971000/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023中考数学人教版单元检测卷一轮复习[原卷版+解析版]
【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(原卷版+解析版)
展开
这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题20 数据的分析(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题20数据的分析解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题20数据的分析原卷版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
(试卷满分120分,答题时间120分钟)
一、选择题(共10小题,每题3分,共30分)
1. (2022广西河池)希望中学规定学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若小强的三项成绩(百分制)依次是95,90,91.则小强这学期的体育成绩是( )
A. 92B. 91.5C. 91D. 90
2. (2022大连)一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表所示.
则所销售的女鞋尺码的众数是( )
A. B. C. D.
3. (2022山东日照)下列说法正确的是( )
A. 一元一次方程的解是x=2
B. 在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定
C. 从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中
D. 将一次函数y=-2x+5的图象向上平移两个单位,则平移后的函数解析式为y=-2x+1
4. (2022浙江金华)观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为( )
A. 5B. 6C. 7D. 8
5. (2022山东济宁)某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是( )
A. 从2月到6月,阅读课外书的本数逐月下降
B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45
C. 每月阅读课外书本数的众数是45
D. 每月阅读课外书本数的中位数是58
6. (2022广西百色)某班一合作学习小组有5人,某次数学测试成绩数据分别为65、78、86、91、85,则这组数据的中位数是( )
A. 78B. 85C. 86D. 91
7. (2022浙江台州)从,两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是( )
A. 平均数B. 中位数C. 众数D. 方差
8.(2022浙江嘉兴) A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是( )
A. 且.B. 且.
C. 且D. 且.
9. (2022四川绵阳)某中学青年志愿者协会的10名志愿者,一周的社区志愿服务时间如下表所示:
关于志愿者服务时间的描述正确的是( )
A. 众数是6B. 平均数是4C. 中位数是3D. 方差是1
10.(2022青海西宁)家务劳动是劳动教育的一个重要方面,教育部基础教育司发布通知要求家长引导孩子力所能及地做一些家务劳动.某校为了解七年级学生平均每周在家的劳动时间,随机抽取了部分七年级学生进行调查,根据调查结果,绘制了如下频数分布表:
根据表中的信息,下列说法正确的是( )
A. 本次调查的样本容量是50人
B. 本次调查七年级学生平均每周在家劳动时间的中位数落在二组
C. 本次调查七年级学生平均每周在家劳动时间的众数落在四组
D. 若七年级共有500名学生,估计平均每周在家劳动时间在四组的学生大约有100人
二、填空题(共8小题,每空3分,共24分)
1.(2022浙江丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9,则这组数据的平均数是___________.
2.(2022内蒙古包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:
根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是______.(填“甲”或“乙”)
3. (2022广西百色)为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,从学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取,甲、乙、丙三位应聘者的测试成绩(10分制)如表所示,如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课“项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中______(填:甲、乙或丙)将被淘汰.
4. (2022海南)在一次视力检查中,某班7名学生右眼视力的检查结果为:4.2、4.3、4.5、4.6、4.8、4.8、5.0,这组数据的中位数和众数分别是___________
5. (2022云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:
数据9.9,9.7,9.6,10,9.8的中位数是________
6.(2022山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:),结果统计如下:
则两个大豆品种中光合作用速率更稳定的是_________(填“甲”或“乙”).
7.甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S甲2=0.70,S乙2=0.73,甲、乙两位同学成绩较稳定的是 同学.
8.某5人学习小组在寒假期间进行线上测试,其成绩(分)分别为:86,88,90,92,94,方差为S2=8.0,后来老师发现每人都少加了2分,每人补加2分后,这5人新成绩的方差S新2= .
三、解答题(本大题有6道小题,共66分)
1. (10分)(2022安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生.为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):
A:,B:,C:,
D:,E:,F:,
并绘制七年级测试成绩频数直方图和八年级测试成绩扇形统计图,部分信息如下:
已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88
请根据以上信息,完成下列问题:
(1)n=______,a=______;
(2)八年级测试成绩的中位数是______﹔
(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.
2.(10分)(2022北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.
a.甲、乙两位同学得分的折线图:
b.丙同学得分:
10,10,10,9,9,8,3,9,8,10
c.甲、乙、丙三位同学得分的平均数:
根据以上信息,回答下列问题:
(1)求表中m的值;
(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);
(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).
3.(10分)(2022福建)学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图,其中A组为,B组为,C组为,D组为,E组为,F组为.
(1)判断活动前、后两次调查数据的中位数分别落在哪一组;
(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数.
4.(12分)(2022甘肃兰州)人口问题是“国之大者”.以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:
信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:
(数据分成6组:,,,,,)
信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在这一组的数据是:58,47,45,40,43,42,50;
信息三:2010——2021年全国大陆人口数及自然增长率;
请根据以上信息,解答下列问题:
(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为______百万人.
(2)下列结论正确的是______.(只填序号)
①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;
②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;
③2010-2021年全国大陆人口自然增长率持续降低.
(3)请写出2016-2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.
5.(12分)(2021陕西)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,并绘制成如下统计图:
根据以上信息,回答下列问题:
(1)这60天的日平均气温的中位数为 ,众数为 ;
(2)求这60天的日平均气温的平均数;
(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.
6.(12分)(2022广西北部湾)综合与实践
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动,
【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
【实践探究】分析数据如下:
【问题解决】
(1)上述表格中,________,________;
(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是________(填序号)
(3)现有一片长,宽的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.
尺码/
22.5
23
23.5
24
24.5
销售量/双
1
4
6
8
1
时间/h
2
3
4
5
6
人数
1
3
2
3
1
组别
一
二
三
四
劳动时间x/h
频数
10
20
12
8
候选人
通识知识
专业知识
实践能力
甲
80
90
85
乙
80
85
90
成绩
应聘者
甲
乙
丙
学历
9
8
9
笔试
8
7
9
上课
7
8
8
现场答辩
8
9
8
评委1
评委2
评委3
评委4
评委5
9.9
9.7
9.6
10
9.8
品种
第一株
第二株
第三株
第四株
第五株
平均数
甲
32
30
25
18
20
25
乙
28
25
26
24
22
25
同学
甲
乙
丙
平均数
8.6
8.6
m
1
2
3
4
5
6
7
8
9
10
芒果树叶的长宽比
3.8
3.7
3.5
3.4
3.8
4.0
3.6
4.0
3.6
4.0
荔枝树叶的长宽比
2.0
2.0
2.0
2.4
1.8
1.9
1.8
2.0
1.3
1.9
平均数
中位数
众数
方差
芒果树叶的长宽比
3.74
m
4.0
0.0424
荔枝树叶的长宽比
1.91
2.0
n
0.0669
相关试卷
这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题27 相似(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题27相似解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题27相似原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题25 概率初步(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题26反比例函数解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题26反比例函数原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题24 圆(原卷版+解析版),文件包含中考一轮复习2023年中考数学人教版单元检测卷专题24圆解析版doc、中考一轮复习2023年中考数学人教版单元检测卷专题24圆原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。