|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023高考数学复习专项训练《圆的切线方程》
    立即下载
    加入资料篮
    2023高考数学复习专项训练《圆的切线方程》01
    2023高考数学复习专项训练《圆的切线方程》02
    2023高考数学复习专项训练《圆的切线方程》03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023高考数学复习专项训练《圆的切线方程》

    展开
    这是一份2023高考数学复习专项训练《圆的切线方程》

    2023高考数学复习专项训练《圆的切线方程》一 、单选题(本大题共13小题,共65分)1.(5分)已知U={1,2,3,4,5,6,7,8},A={2,3,5},B={1,2,6,7},则A∩(∁UB)=()A、{1.6}B、{3,5}C、{6,7,8}D、{1,3,5}A. {1.6} B. {3,5} C. {6,7,8} D. {1,3,5}2.(5分)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是(    )A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生3.(5分)已知{an}为等差数列,且2a3+a6=6,则a4=()A. 2 B. 3 C. 12 D. 不能确定4.(5分)口袋中装有编号为①、②的2个红球和编号为①、②、③、④、⑤的5个黑球,小球除颜色、编号外形状、大小完全相同.现从中取出1个小球,记事件A为“取到的小球的编号为②”,事件B为“取到的小球是黑球”,则下列说法正确的是()A. A与B互斥 B. A与B对立 C. P(AB)=67 D. P(A∪B)=675.(5分)已知函数f(x)=(m2-2m-2)⋅xm-2是幂函数,且在(0,+∞)上递增,则实数m=()A、-1B、-1或3C、3D、2A. -1 B. -1或3 C. 3 D. 26.(5分)我国魏晋时期的数学家刘徽创立了“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x2+y2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A. x+2-1y-2=0 B. 1-2x-y+2=0 C. x-2+1y+2=0 D. 2-1x-y+2=07.(5分)函数f(x)的部分图象如图所示,则f(x)的解析式可以是( )  A. f(x)=-sinx B. f(x)=xcosx C. fx=xcosx-sinx D. f(x)=cosx8.(5分)已知向量a→=(-2,-1),b→=(2,-2),则(a→-b→)⋅(a→+2b→)等于()A. 7 B. -6 C. -10 D. -139.(5分)如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是() A. y=-x3+3xx2+1 B. y=x3-xx2+1 C. y=2xcosxx2+1 D. y=2sinxx2+110.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )A. 8π3 B. 42π3 C. 8π D. 42π11.(5分)已知两条相交直线a,b,a//平面α,则b与α的位置关系是(    )A. b⊂平面α B. b⊥平面α C. b//平面α D. b与平面α相交,或b//平面α12.(5分)已知直线y=kx与圆C:(x-2)2+y2=1相切,则实数k的值是(    )A. ±2 B. ±3 C. ±1 D. ±3313.(5分)在区间[0,2]上随机地取一个数x,则事件“-1⩽log12(x+12)⩽1”发生的概率为(    )A. 34 B. 23 C. 13 D. 14二 、填空题(本大题共5小题,共25分)14.(5分)已知集合A={x1-xx⩾0},B={ x|y=lg(2x-1)},则A∩B=______.15.(5分)已知tanα=4,tan(π-β)=3,则tan(α+β)=__________.16.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为̂y=0.85x-85.71,给定下列结论:  ①y与x具有正的线性相关关系;  ②回归直线过样本点的中心(x,y);  ③若该大学某女生身高增加1cm,则其体重约增加0.85kg;  ④若该大学某女生身高为170cm,则可断定其体重必为58.79kg.  其中正确的结论是 ______ .17.(5分)已知点P、A、B、C均在半径为13的球O上,且AB=53.∠ACB=60°,则三棱锥P-ABC的体积的最大值为 ______.18.(5分)已知在ΔABC中,AC=2,AB=3,∠BAC=60°,AD是ΔABC的角平分线,则AD=_______三 、解答题(本大题共5小题,共60分)19.(12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(Ⅱ)若对年龄在[5,15)的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?  参考数据:P(K2⩾3.841)=0.050,P(K2⩾6.635)=0.010,P(K2⩾10.828)=0.001.20.(12分)已知直线l经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,直线l3:2x-y-1=0;   (1)若l//l3,求l的直线方程;   (2)若l⊥l3,求l的直线方程.21.(12分)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:  (1)AB//平面A1B1C;(2)平面ABB1A1⊥平面A1BC.22.(12分)在ΔABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.  (Ⅰ)求cosB的值;   (Ⅱ)求sin(2B+π6)的值.23.(12分)已知函数f(x)=a2x-2ax+1+2(a>0且a≠1).  (1)若f(-1)=14,求函数g(x)=f(x)+1的所有零点;  (2)若函数f(x)的最小值为-7,求实数a的值. 答案和解析1.【答案】null;【解析】解:∵U={1,2,3,4,5,6,7,8},B={1,2,6,7},  ∴CUB={3,4,5,8},  又∵A={2,3,5},∴A∩(CUB)={3,5}.  故选:B.  求出CUB,利用交集定义能求出A∩(CUB).  此题主要考查集合的运算,考查交集、补集定义、不等式性质等基础知识,考查运算求解能力,是基础题. 2.【答案】C;【解析】  该题考查了系统抽样方法,关键是求得系统抽样的分段间隔,属于基础题.  根据系统抽样的特征,从1000名学生从中抽取一个容量为100的样本,抽样的分段间隔为10,结合从第5组抽取的号码为46,可得第一组用简单随机抽样抽取的号码.    解:∵从1000名学生从中抽取一个容量为100的样本,  ∴系统抽样的分段间隔为1000100=10,  ∵46号学生被抽到,  则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,  设其数列为{an},则an=6+10(n-1)=10n-4,  当n=62时,a62=616,即在第62组抽到616,  故选C. 3.【答案】A;【解析】解:设d为等差数列{an}的公差,  ∵2a3+a6=3a1+9d=3(a1+3d)=3a4=6,  ∴a4=2,  故选:A.  由题意,利用等差数列的通项公式,求出a4的值.  此题主要考查等差数列的通项公式,属于基础题. 4.【答案】D;【解析】解:∵事件A为“取到的小球的编号为②”,事件B为“取到的小球是黑球”,  又A∩B=“取到编号为②的黑球”,故A与B不互斥,也不对立,故A、B错,  又P(AB)=17,故C错,  又A∪B=“取到的球编号为②或者为黑球”则P(A∪B)=P(A)+P(B)-P(AB)=27+57-17=67,故D正确,  故选:D.  利用互斥事件,对立事件定义可求.  此题主要考查互斥事件和对立事件的定义,属于基础题. 5.【答案】null;【解析】解:由题意知:m2-2m-2=1,即(m+1)(m-3)=0,解得m=-1或m=3,  ∴当m=-1时,m-2=-3,则f(x)=x-3在(0,+∞)上单调递减,不合题意;  当m=3时,m-2=1,则f(x)=x在(0,+∞)上单调递增,符合题意,  ∴m=3,  故选:C.  根据幂函数的定义和性质,列出相应的方程,即可求得答案.  此题主要考查幂函数的定义和性质,属于基础题. 6.【答案】C;【解析】  此题主要考查圆的标准方程,直线的点斜式方程和一般式方程,属于中档题.  根据题意作图,求出各点坐标,利用点斜式求出方程,在转化为一般式方程即可.解:如图所示,可知A(2,0),B(1,1),C(0,2),D(-1,1),E(-2,0),所以AB,BC,CD,DE所在直线的方程分别为y=1-01-2x-2,y=1-2x+2,y=2-1x+2,y=12-1x+2,整理为一般式即x+2-1y-2=0,1-2x-y+2=0,2-1x-y+2=0,x-2-1y+2=0,故选C.    7.【答案】C;【解析】此题主要考查函数图象的识别和判断,结合函数图象的特点,利用特殊值法是解决函数图象类题目中最常用的方法.复杂的函数图象,还需要使用导数进行解决.由函数图象的对称性可知函数为奇函数,函数过原点,以及利用特殊值可进行判断.  解:由图象可知函数图象关于原点对称,所以函数为奇函数,所以排除D;当x=π2时,f(x)<0,排除B;当fx=-sinx时,fπ=0,所以排除A.  故选C. 8.【答案】D;【解析】解:向量a→=(-2,-1),b→=(2,-2),  a→-b→=(-4,1),a→+2b→=(2,-5),  则(a→-b→)·(a→+2b→)=-8-5=-13.  故选:D.  求出相关向量,利用向量的数量积运算法则求解即可.  本题考查向量的坐标运算,向量的数量积,考查计算能力,属于基础题. 9.【答案】A;【解析】解:首先根据图像判断函数为奇函数,  其次观察函数在(1,3)存在零点,  而对于B选项:令y=0,即x3-xx2+1=0,解得x=0,或x=1或x=-1,故排除B选项,  对于D选项,令y=0,即2sinxx2+1=0,解得x=kπ,k∈Z,故排除D选项,  C选项分母为x2+1恒为正,但是分子中cosx是个周期函数,故函数图像在(0,+∞)必定是正负周期出现,故错误,  故选:A.  首先分析函数奇偶性,然后观察函数图像在(1,3)存在零点,可排除B,D选项,再利用cosx在(0,+∞)的周期性可判断C选项错误.  此题主要考查函数图像的识别,属于基础题. 10.【答案】D;【解析】解:该几何体是由两个全等的圆锥组合而成,其中底面圆的半径为2,母线长为2,  所以该几何体的表面积为S=2×12×(2π×2)×2=42π.  故选:D.  该几何体是由两个全等的圆锥组合而成,求得底面圆的半径和母线长,再根据表面积的计算公式,即可得解.  此题主要考查简单空间几何体的表面积的计算,熟练掌握圆锥表面积的求法是解答该题的关键,考查空间立体感和运算求解能力,属于中档题. 11.【答案】D;【解析】  这道题主要考查空间中直线与平面的位置关系,解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系  由题意画出图形,不难看出直线b与平面α的位置关系,平行或相交,从而得出结论.    解:由题意画出图形      当a, b所在平面与平面α,平行时b与平面α平行;当a,b,所在平面与平面α相交时,b与平面α相交;故直线b与平面α的位置关系是:平行或相交(直线b在平面α外) .  故选D. 12.【答案】D;【解析】  这道题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.  根据圆心(2,0)到kx-y=0的距离等于半径可得|2k-0+0|k2+1=1,解方程求得k的值.    解:∵直线y=kx与圆(x-2)2+y2=1相切,∴圆心(2,0)到kx-y=0的距离等于半径.  ∴得|2k-0+0|k2+1=1,  解得k=±33.  故选:D.  13.【答案】A;【解析】  这道题主要考查了几何概型与长度相关的应用,属于基础题.  先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.    解:利用几何概型,其测度为线段的长度.  ∵-1⩽log12(x+12)⩽1,  ∴12⩽x+12⩽2,  解得0⩽x⩽32,  ∵0⩽x⩽2,  ∴所求的概率为:P=322=34,  故选A. 14.【答案】\left{ x1212}  所以A∩B=\left{ x120,可知①②③均正确,对于④回归方程只能进行预测,但不可断定.    解:对于①,0.85>0,所以y与x具有正的线性相关关系,故正确;  对于②,回归直线过样本点的中心(x,y),故正确;  对于③,∵回归方程为̂y=0.85x-85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;  对于④,x=170cm时,̂y=0.85×170-85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确.  故答案为:①②③.    17.【答案】62534;【解析】解:设经过A,B,C的截面圆的圆心为O1,半径为r,  则由正弦定理,得2r=ABsin∠ACB=10,  所以OO1=132-52=12,  点P到平面ABC的最大距离为12+13=25,  因为在△ABC中,AB2=AC2+BC2-2AC×BC×cos∠ACB,  所以75=AC2+BC2-AC×BC⩾AC×BC,  即AC×BC⩽75,当且仅当AC=BC时,等号成立,  所以△ABC的最大面积为12AC×BC×sin∠ACB⩽12×75×32=7534,  故三棱锥P-ABC的体积的最大值为13×25×7534=62534,  故答案为:62534.  根据题意求得点P到平面ABC的最大距离,△ABC的最大面积,代入体积公式即可求解.  此题主要考查了三棱锥体积的最值问题,属于中档题. 18.【答案】635;【解析】  此题主要考查了三角形的面积公式的应用,属于基础题.    解:如图,SΔABC=SΔABD+SΔACD,    所以12×3×2sin 60°=12×3ADsin 30°+12×2AD×sin 30°,  所以AD=635.  故答案为635 19.【答案】解:(Ⅰ)根据题意填写2×2列联表如下;根据表中数据,计算K2=50×(3×11-7×29)2(3+7)(29+11)(3+29)(7+11)  ≈6.27<6.635,  所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;  (Ⅱ)年龄在[5,15)中支持“生育二胎放开”的4人分别为a,b,c,d,  不支持“生育二胎放开”的人记为M,  则从年龄在[5,15)的被调查人中随机选取两人所有可能的结果有:  (a,b),(a,c),(a,d),(a,M),(b,c),  (b,d),(b,M),(c,d),(c,M),(d,M)共10种;  设“恰好这两人都支持“生育二胎放开””为事件A,  则事件A所有可能的结果有:  (a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,  ∴P(A)=610=35,  所以对年龄在[5,15)的被调查人中随机选取两人进行调查时,  恰好这两人都支持“生育二胎放开”的概率为35.;【解析】该题考查了独立性检验与列举法求古典概型的概率问题,是基础题.  (Ⅰ)根据题意填写2×2列联表,由表中数据计算观测值,对照临界值即可得出结论;  (Ⅱ)用列举法求出基本事件数,计算所求的概率值. 20.【答案】解:(1)由x+y-4=0x-y+2=0,得x=1y=3,   ∴l1与l2的交点为(1,3).   设与直线2x-y-1=0平行的直线为2x-y+c=0,   则2-3+c=0,∴c=1.   ∴所求直线方程为2x-y+1=0.   (2)设与直线2x-y-1=0垂直的直线为x+2y+c=0,   则1+2×3+c=0,解得c=-7.   ∴所求直线方程为x+2y-7=0.;【解析】  (1)由x+y-4=0x-y+2=0,得l1与l2的交点为(1,3).设与直线2x-y-1=0平行的直线为2x-y+c=0,由此能求出l的直线方程.   (2)设与直线2x-y-1=0垂直的直线为x+2y+c=0,由此能求出l的直线方程.   该题考查直线方程的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用. 21.【答案】(1)在平行六面体ABCD-A1B1C1D1中,AB//A1B1.  因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,  所以AB//平面A1B1C.  (2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.  又因为AA1=AB,所以四边形ABB1A1为菱形,  因此AB1⊥A1B.  又因为AB1⊥B1C1,BC//B1C1,  所以AB1⊥BC.  又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,  所以AB1⊥平面A1BC.  因为AB1⊂平面ABB1A1,  所以平面ABB1A1⊥平面A1BC.;【解析】此题主要考查线面平行以及线面垂直的证明,比较基础.(1)利用直线与平面平行的判定定理及可得证;(2)利用平面与平面垂直的判定定理即可得证. 22.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB=csinC,所以bsinC=csinB,  又由3csinB=4asinC,  得3bsinC=4asinC,即3b=4a,  又因为b+c=2a,得b=4a3,c=2a3,  由余弦定理可得cosB=a2+c2-b22ac=a2+49a2-169a22⋅a⋅23a=-14;  (Ⅱ)由(Ⅰ)得sinB=1-cos2B=154,从而sin2B=2sinBcosB=-158,  cos2B=cos2B-sin2B=-78,  故sin(2B+π6)=sin2Bcosπ6+cos2Bsinπ6=-158×32-78×12=-35+716.;【解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题.  (Ⅰ)根据正余弦定理可得;  (Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.    23.【答案】解:(1)由f(-1)=14,得a-2=2-2,∴a=2,  ∴f(x)=22x-4×2x+2.  令t=2x,则由g(x)=f(x)+1=0,得t2-4t+3=0,  ∴t=1或3,即2x=1或2x=3,∴x=0或x=log23.  ∴函数g(x)的零点为x=0,x=log23.  (2)∵f(x)=a2x-2a.ax+2=(ax-a)2+2-a2,  ∴f(x)min=f(1)=2-a2=-7,  又a>0,∴a=3.;【解析】【试题解析】  此题主要考查求函数的零点与最值,属于基础题目.  (1)利用换元法转化为二次函数问题求解即可;  (2)借助二次函数及指数函数的性质求出f(x)的最小值.  年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)频数510151055支持“生育二胎”4512821年龄不低于45岁的人数年龄低于45岁的人数合计支持a=c=不支持b=d=合计年龄不低于45岁的人数年龄低于45岁的人数合计支持a=3c=2932不支持b=7d=1118合 计104050
    相关试卷

    2023高考数学复习专项训练《两点式方程》: 这是一份2023高考数学复习专项训练《两点式方程》,共12页。试卷主要包含了、单选题,、填空题,、解答题等内容,欢迎下载使用。

    2023高考数学复习专项训练《截距式方程》: 这是一份2023高考数学复习专项训练《截距式方程》,共19页。试卷主要包含了、单选题,、填空题,、解答题等内容,欢迎下载使用。

    2023高考数学复习专项训练《点斜式方程》: 这是一份2023高考数学复习专项训练《点斜式方程》,共12页。试卷主要包含了、单选题,、填空题,、解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023高考数学复习专项训练《圆的切线方程》
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map