- 11.1《不等关系》课件+教案 课件 2 次下载
- 11.2《不等式的基本性质》课件+教案 课件 2 次下载
- 11.4.1《一元一次不等式(1)》课件+教案 课件 2 次下载
- 11.4.2《一元一次不等式(2)》课件+教案 课件 1 次下载
- 11.5.1《一元一次不等式与一次函数(1)》课件 课件 2 次下载
初中数学鲁教版 (五四制)七年级下册3 不等式的解集精品课件ppt
展开11.3 不等式的解集
●教学目标
(一)教学知识点
1.能够根据具体问题中的大小关系了解不等式的意义.
2.理解不等式的解、不等式的解集、解不等式这些概念的含义.
3.会在数轴上表示不等式的解集.
(二)能力训练要求
1.培养学生从现实生活中发现并提出简单的数学问题的能力.
2.经历求不等式的解集的过程,发展学生的创新意识.
(三)情感与价值观要求
从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造.
●教学重点
1.理解不等式中的有关概念.
2.探索不等式的解集并能在数轴上表示出来.
●教学难点
探索不等式的解集并能在数轴上表示出来.
●教学方法
引导学生探索学习法.
●教具准备
投影片一张
记作(§11.3 A)
●教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质.
[生]不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.
[师]很好.
在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?
[生]记得.
能够使方程两边的值相等的未知数的值就是方程的解.
求方程的解的过程,叫做解方程.
[师]非常好.上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.
Ⅱ.新课讲授
1.现实生活中的不等式.
燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?
[师]分析:人转移到安全区域需要的时间最少为秒,导火线燃烧的时间为秒,要使人转移到安全地带,必须有:>.
解:设导火线的长度应为x cm,根据题意,得
>
∴x>5.
2.想一想
(1)x=4,5,6,7.2能使不等式x>5成立吗?
(2)你还能找出一些使不等式x>5成立的x的值吗?
[生](1)x=5不能使x>5成立,x=6,8能使不等式x>5成立.
(2)x=9,10,11…等比5大的数都能使不等式x>5成立.
[师]由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?
[生]可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x>5的解.所以不等式的解不唯一,有无数个解.
[师]正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集(solution set).
请大家再类推出解不等式的概念.
[生]求不等式解集的过程叫解不等式.
3.议一议.
请你用自己的方式将不等式x>5的解集和不等式x-5≤-1的解集分别表示在数轴上,并与同伴交流.
[生]不等式x>5的解集可以用数轴上表示5的点的右边部分来表示(图11-2),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.
图11-2
不等式x-5≤-1的解集x≤4可以用数轴上表示4的点及其左边部分来表示(图11-3),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.
图11-3
[师]请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明.
[生]如x>3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点.
x<3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.
x≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.
x≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.
4.例题讲解
投影片(§11.3 A)
根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.
(1)x-2≥-4;(2)2x≤8
(3)-2x-2>-10
解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2
在数轴上表示为:
图11-4
(2)根据不等式的基本性质2,两边都除以2,得x≤4
在数轴上表示为:
图11-5
(3)根据不等式的基本性质1,两边都加上2,得-2x>-8
根据不等式的基本性质3,两边都除以-2,得x<4
在数轴上表示为:
图11-6
Ⅲ.课堂练习
1.判断正误:
(1)不等式x-1>0有无数个解;
(2)不等式2x-3≤0的解集为x≥.
2.将下列不等式的解集分别表示在数轴上:
(1)x>4;(2)x≤-1;
(3)x≥-2;(4)x≤6.
1.解:(1)∵x-1>0,∴x>1
∴x-1>0有无数个解.∴正确.
(2)∵2x-3≤0,∴2x≤3,
∴x≤,∴结论错误.
2.解:
图2-8
Ⅳ.课时小结
本节课学习了以下内容
1.理解不等式的解,不等式的解集,解不等式的概念.
2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.
Ⅴ.课后作业
习题11.3
Ⅵ.活动与探究
小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗?
解:不正确.
从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3.
所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部.
因此说x<2是不等式x+3<6的解是错误的.
●板书设计
§11.3 不等式的解集
一、1.现实生活中的不等式(礼花燃放问题);
2.想一想(类推不等式中的有关概念);
3.议一议(如何把不等式的解集在数轴上表示出来);
4.例题讲解.
二、课堂练习
三、课时小结
四、课后作业
●备课资料
参考练习
1.用不等式表示:
(1)x的3倍大于或等于1;
(2)x与5的和不小于0;
(3)y与1的差不大于6;
(4)x的小于或等于2.
2.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.
3.不等式x+3≥6的解集是什么?
参考答案
1.(1)3x≥1;(2)x+5≥0;
(3)y-1≤6;(4)x≤2.
2.x<3指小于3的所有数,x≤3指小于3的所有数和3;在数轴上表示它们时,x<3不包括3,只是3左边的部分,x≤3不仅包括3左边的部分,而且还包括3.
在数轴上表示略.
3.x≥3.
初中数学青岛版八年级下册11.3 图形的中心对称优秀课件ppt: 这是一份初中数学青岛版八年级下册11.3 图形的中心对称优秀课件ppt,文件包含113图形的中心对称2课件pptx、113图形的中心对称教案docx等2份课件配套教学资源,其中PPT共30页, 欢迎下载使用。
青岛版八年级下册第11章 图形的平移与旋转11.3 图形的中心对称优秀课件ppt: 这是一份青岛版八年级下册第11章 图形的平移与旋转11.3 图形的中心对称优秀课件ppt,文件包含113图形的中心对称1课件pptx、113图形的中心对称教案docx等2份课件配套教学资源,其中PPT共18页, 欢迎下载使用。
数学七年级下册4.3 不等式的解集获奖课件ppt: 这是一份数学七年级下册4.3 不等式的解集获奖课件ppt,文件包含43不等式的解集课件ppt、43不等式的解集教案doc、43不等式的解集教案doc等3份课件配套教学资源,其中PPT共12页, 欢迎下载使用。