






初中鲁教版 (五四制)第十一章 一元一次不等式和一元一次不等式组5 一元一次不等式与一次函数精品ppt课件
展开我们知道,一次函数的图象是一条直线.
作出一次函数 y = 2x - 5 的图象如右,
观察图象回答下列问题:
(1) x 取哪些值时, y=0 ?
(2) x 取哪些值时, y>0 ?
(3) x 取哪些值时, y<0 ?
(4) x 取哪些值时, y>1 ?
能否将上述 “关于函数值的问题 ”, 改为“关于x 的不等式的问题” ?
将“一次函数值的问题”改为“一次不等式的问题”
(1) x 取哪些值时, y =0 ?
(2) x 取哪些值时, y >0 ?
(3) x 取哪些值时, y <0 ?
(4) x 取哪些值时, y >3 ?
因为 y = 2x – 5,
所以,将(1)~(4) 中的 y 换成 2x-5
能否把“关于一次不等式的问题”变换成“关于一次函数的值的问题”?
能,试着自己列举一示例
函数、(方程) 不等式
“关于一次函数的值的问题” 可变换成 “关于一次不等式的问题”;
反过来, “关于一次不等式的问题” 可变换成 “关于一次函数的值的问题”
因此,我们既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者相互渗透,互相作用.
不等式与函数、方程是紧密联系着的一个整体 .
如果 y=-2x-5 , 那么当 x 取何值时 , y>0 ?
你解答此道题, 可有几种方法 ?
将函数问题转化为不等式问题.
-2x- 5 > 0 ;
用“函数图象法”及“解不等式法”解函数问题
函数y1=2x-5和y2=x-2的图象如图所示,观察图象回答下列问题:
(1) x 取何值时, y1=y2?
(2) x 取何值时, y1>y2 ?
(3) x 取何值时, y1
一次函数y1=2x-5的图象在y2=x-2的图象下方的部分对应点的横坐标就是不等式2x-5
一次函数(值)的变化对应着相应自变量的取值范围, 这个取值范围, 既可从一次函数的图象上直观看出(近似值), 也可通过解(方程)不等式而得到(精确值).
“一次函数问题”可转换成 “一次不等式的问题” ;反过来,“一次不等式的问题”可转换成 “一次函数的问题”。
我们既可以运用函数图象解不等式 ,也可以运用解不等式帮助研究函数问题 ,二者相互渗透 ,互相作用。不等式与函数 、方程 是紧密联系着的一个整体 。
1、已知 y1= -x+3,y2=3x-4 ,当 x 为何值时,y1>y2 ? 你是怎样做的 ? 与同伴交流.
2、作出函数y1=2x-4与y2=-2x+8的图象,并观察图象回答下列问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)你能求出函数y1=2x-4, y2 =-2x+8的图象与x轴所围成的三角形的面积吗?并写出过程.
(1)你掌握了哪些新的知识?
(2)你体验了哪些新的方法?
(3)你认为你本节课的表现如何?
(4)你认为本节课同学们的表现如何?
(5)通过本节课的学习,你还有哪些新的启示?
通过本节课的学习,你有哪些收获?
初中数学北师大版八年级下册第二章 一元一次不等式和一元一次不等式组5 一元一次不等式与一次函数精品ppt课件: 这是一份初中数学北师大版八年级下册第二章 一元一次不等式和一元一次不等式组5 一元一次不等式与一次函数精品ppt课件,文件包含25一元一次不等式与一次函数第1课时pptx、25一元一次不等式与一次函数第一课时同步练习docx、北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组25一元一次不等式与一次函数第1课时教学详案docx等3份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
北师大版八年级下册5 一元一次不等式与一次函数获奖ppt课件: 这是一份北师大版八年级下册5 一元一次不等式与一次函数获奖ppt课件,共28页。PPT课件主要包含了一条直线,0-5,y2x-5,由上述讨论易知,y-2x-5,思路二,思路一,由图象可得,一元一次方程,一元一次不等式等内容,欢迎下载使用。
初中数学北师大版八年级上册1 函数教课课件ppt: 这是一份初中数学北师大版八年级上册1 函数教课课件ppt,共21页。PPT课件主要包含了知识回顾,直接解方程组,“数”,“形”,问题1,问题2,y2x-5,新课讲解,归纳总结,一元一次不等式等内容,欢迎下载使用。