所属成套资源:北师大版2023年中考数学一轮复习单元练习题及答案
北师大版2023年中考数学一轮复习《数据的分析》单元练习(含答案)
展开这是一份北师大版2023年中考数学一轮复习《数据的分析》单元练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北师大版2023年中考数学一轮复习
《数据的分析》单元练习
一 、选择题
1.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )
A.1 B.2 C.0 D.-1
2.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是( )
A.11.6 B.2.32 C.23.2 D.11.5
3.如果一组数据x1,x2,x3,x4的平均数是,那么另一组数据x1,x2+1,x3+2,x4+3的平均数是( )
A. B.+1 C.+1.5 D.+6
4.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是( )
A.97 B.90 C.95 D.88
5.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是( )
A.四位同学身高的中位数一定是其中一位同学的身高
B.丁同学的身高一定高于其他三位同学的身高
C.丁同学的身高为1.71米
D.四位同学身高的众数一定是1.65
6.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
A.94分,96分 B.96分,96分 C.94分,96.4分 D.96分,96.4分
7.小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是( )
A.33℃,33℃ B.33℃,32℃ C.34℃,33℃ D.35℃,33℃
8.某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是( )
A.300,150,300 B.300,200,200
C.600,300,200 D.300,300,300
9.小莹同学10个周综合素质评价成绩统计如下:
这10个周的综合素质评价成绩的中位数和方差分别是( )
A.97.5,2.8 B.97.5,3 C.97,2.8 D.97,3
10.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是( )
班 级 | 平均数 | 中位数 | 众数 | 方差 |
八(1)班 | 94 | 93 | 94 | 12 |
八(2)班 | 95 | 95.5 | 93 | 8.4 |
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.八(2)班的成绩集中在中上游
D.两个班的最高分在八(2)班
11.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( )
A.中位数不变,方差不变 B.中位数变大,方差不变
C.中位数变小,方差变小 D.中位数不变,方差变小
12.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.
根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐( )
A.李飞或刘亮 B.李飞 C.刘亮 D.无法确定
二 、填空题
13.在演唱比赛中,5位评委给一位歌手打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均分是 分.
14.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是 .
15.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.
孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
16.如果一组数据从小到大依次排列为x1,x2,x3,x4,x5,且x1,x2,x3的平均数为25,x3,x4,x5的平均数为35,x1,x2,x3,x4,x5的平均数是30,那么这组数据的中位数为________.
17.为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:
阅读时间(小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时的众数是_____.
18.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是 (填“甲”或“乙“).
三 、解答题
19.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:
(1)这个班级捐款总数是多少元?
(2)求这30名同学捐款的平均数.
20.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
21.学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:
(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数。
(2)每天体育活动时间的中位数;
(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?
22.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.A课程成绩的频数分布直方图如下(数据分成6组:
40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.A课程成绩在70≤x<80这一组成绩分别是:
c.A,B两门课程成绩的平均数、中位数、众数如下:
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是______(填“A”或“B”),请说明理由;
(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.
23.在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:
(1)根据上述数据,将下列表格补充完成.
整理、描述数据:
分析数据:样本数据的平均数、中位数、满分率如表:
得出结论:
(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共 人;
(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.
24.某初中八年级数学活动小组为了调查居民的用水情况,从一社区的1800户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:
月用水量(吨) | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
户数 | 4 | 2 | 5 | 11 | 4 | 2 | 2 |
(1)求这30户家庭月用水量的平均数、众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费。你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由。
答案
1.C
2.A
3.C
4.B
5.C
6.D
7.A
8.D
9.B
10.D.
11.D.
12.C.
13.答案为:8.0.
14.答案为:7.
15.答案为:88.
16.答案为:30
17.答案为:3
18.答案为:甲;
19.解:(1)这个班级捐款总数为5×11+10×9+15×6+20×2+25×1+30×1=330(元).
(2)这个班级捐款总数是330元,这30名同学捐款的平均数为11元.
20.解:
(1)在这次测试中,七年级在80分以上的有15+8=23人,故答案为:23;
(2)七年级50人成绩的中位数是第25、26个数据的平均数,
而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;
(3)甲学生在该年级的排名更靠前,
∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,
八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,
∴甲学生在该年级的排名更靠前.
(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).
21.解:(1)被调查的学生总数有500人,每天体育活动时间为1.5小时的学生数为120人
(2)中位数为1
(3)该地九年级每天体育活动时间超过1小时的学生为1400人
22.解:(1)78.75.
(2)B,该学生A课程分数低于中位数,排名在中间位置之后,而B课程分数高于中位数,
排名在中间位置之前
(3)该年级学生都参加测试,估计A课程分数超过75.8的人数为180人.
23.解:(1)由题意知初二年级的分数从小到大排列为69、69、79、79、89、94、95、96、97、
97、98、98、99、99、99、99、100、100、100、100,
所以初二年级成绩的中位数为97.5分,
补全表格如下:
年级 | 平均数 | 中位数 | 满分率 |
初一 | 90.1 | 93 | 25% |
初二 | 92.8 | 97.5 | 20% |
(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数
共300×25%+300×20%=135人,故答案为:135;
(3)初二年级掌握禁毒知识的总体水平较好,
∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,
∴初二年级掌握禁毒知识的总体水平较好.
24.解:(1)平均数是6.4(吨),众数是7(吨),中位数是7(吨);
(2)1800×6.4=11520(吨)
∴该社区月用水量约为11520吨;
(3)以中位数或众数作为月基本用水量较为合理.
因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.
相关试卷
这是一份中考数学一轮复习考点梳理+单元突破练习 数据的分析(含答案),共11页。试卷主要包含了极差,方差,已知一组从小到大排列的数据等内容,欢迎下载使用。
这是一份中考数学一轮复习考点过关练习《数据的分析》(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习考点梳理+单元突破练习专题20 数据的分析(教师版),共21页。试卷主要包含了极差,方差,6C.0,5D.方差是5等内容,欢迎下载使用。