所属成套资源:2023年中考数学一轮复习考点 通关练习题(含答案)
2023年中考数学一轮复习考点《正方形》通关练习题(含答案)
展开这是一份2023年中考数学一轮复习考点《正方形》通关练习题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习考点
《正方形》通关练习题
一 、选择题
1.已知正方形的边长为2cm,则其对角线长是( )
A.4cm B.8cm C.cm D.2cm
2.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为( )
A.1 B.2 C.3 D.3
3.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )
A.22.5° B.25° C.23° D.20°
4.小明在学习了正方形之后,给同桌小文出了道题.
从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①② B.②③ C.①③ D.②④
5.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是( )
A.三角形 B.菱形 C.矩形 D.正方形
6.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )
A.30 B.34 C.36 D.40
7.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( )
A.1: B.1:2 C.2:3 D.4:9
8.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )
A. B.2 C.2 D.
二 、填空题
9.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 .
10.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为 .
11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF面积为________.
12.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.
13.已知线段AB的长为1,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF丄CD,垂足为F点.若正方形AENM与四边形EFDB的面积相等,则AE的长为 .
14.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长 .
三 、解答题
15.如图,在正方形ABCD中,BC=2,E是对角线BD上的一点,且BE=AB.求△EBC的面积.
16.如图:已知AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:四边形AEDF是菱形;
(2)当△ABC满足什么条件时,四边形AEDF是正方形?
17.如图,∠AOB=90°,OM平分∠AOB,直角三角板的直角顶点P在射线OM上移动,两直角边分别与OA、CB相交于点C、D.
(1)问PC与PD相等吗?试说明理由.
(2)若OP=2,求四边形PCOD的面积.
18.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:
(1)AE⊥BF;
(2)四边形BEGF是平行四边形.
19.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)证明:△ADG≌△DCE;
(2)连接BF,证明:AB=FB.
20.如图,四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…
(1)记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,请求出a2,a3,a4的值;
(2)根据上述规律写出an的表达式.
答案
1.D
2.C.
3.A
4.D
5.B.
6.B.
7.D.
8.B
9.答案为:45°.
10.答案为:2.
11.答案为:2.
12.答案为:4﹣6.
13.答案为:﹣.
14.答案为:.
15.解:作EF⊥BC于F,如图所示:则∠EFB=90°,
∵四边形ABCD是正方形,
∴AB=BC=2,∠DAB=∠ABC=90°,
∴∠ABD=∠DBC=∠ABC=45°,
∴△BEF是等腰直角三角形,
∴EF=BF,
∵BE=AB,
∴BE=BC=2,
∴EF=BF=BE=,
∴△EBC的面积=BC•EF=×2×=.
16.解:(1)证明:∵DE∥AC,DF∥AB,
∴DE∥AF,DF∥AE,
∴四边形AEDF是平行四边形(有两组对边相互平行的四边形是平行四边形),
∴∠EAF=∠EDF(平行四边形的对角相等);
又∵AD是△ABC的角平分线,
∴∠EAD=∠EDA(平行四边形的对角线平分对角),
∴AE=DE(等角对等边),
∴四边形AEDF是菱形(邻边相等的平行四边形是菱形);
(2)由(1)知,四边形AEDF是菱形,
∵当四边形AEDF是正方形时,∠EAF=90°,即∠BAC=90°,
∴△ABC的∠BAC=90°时,四边形AEDF是正方形.
17.解:(1)结论:PC=PD.
理由:过P分别作PE⊥OB于E,PF⊥OA于F,
∴∠CFP=∠DEP=90°,
∵OM是∠AOB的平分线,
∴PE=PF,
∵∠1+∠FPD=90°,∠AOB=90°,
∴∠FPE=90°,
∴∠2+∠FPD=90°,
∴∠1=∠2,
在△CFP和△DEP中,
,
∴△CFP≌△DEP(ASA),
∴PC=PD.
(2)∵四边形PCOD的面积=正方形OEPF的面积,
∴四边形PCOD的面积=×2×2=2.
18.证明:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠ABE=∠BCF=90°,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴AE=BF,∠BAE=∠CBF,
∵EG∥BF,
∴∠CBF=∠CEG,
∵∠BAE+∠BEA=90°,
∴∠CEG+∠BEA=90°,
∴AE⊥EG,
∴AE⊥BF;
(2)延长AB至点P,使BP=BE,连接EP,
如图所示:则AP=CE,∠EBP=90°,
∴∠P=45°,
∵CG为正方形ABCD外角的平分线,
∴∠ECG=45°,
∴∠P=∠ECG,
由(1)得∠BAE=∠CEG,
在△APE和△ECG中,
,
∴△APE≌△ECG(ASA),
∴AE=EG,
∵AE=BF,
∴EG=BF,
∵EG∥BF,
∴四边形BEGF是平行四边形.
19.解:(1)∵四边形ABCD是正方形,
∴∠ADG=∠C=90°,AD=DC,
又∵AG⊥DE,
∴∠DAG+∠ADF=90°=∠CDE+∠ADF,
∴∠DAG=∠CDE,
∴△ADG≌△DCE(ASA);
(2)如图所示,延长DE交AB的延长线于H,
∵E是BC的中点,
∴BE=CE,
又∵∠C=∠HBE=90°,∠DEC=∠HEB,
∴△DCE≌△HBE(ASA),
∴BH=DC=AB,即B是AH的中点,
又∵∠AFH=90°,
∴Rt△AFH中,
BF=AH=AB.
20.解:(1)a2=AC,且在直角△ABC中,AB2+BC2=AC2,
∴a2=a1=,
同理a3=a2=()2a1=2,a4=a3=()3a1=2;
(2)由(1)结论可知:a2=a1=,a3=a2=()2a1=2,a4=a3=()3a1=2;
…故找到规律an=()n﹣1a1=()n﹣1.
相关试卷
这是一份2023年中考数学一轮复习考点《图形的对称》通关练习题(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《视图与投影》通关练习题(含答案),共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《实数》通关练习题(含答案),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。