- 课时跟踪检测(四) 排列数 试卷 0 次下载
- 课时跟踪检测(五) 组合与组合数公式 试卷 0 次下载
- 习题课(二) 随机变量及其分布 试卷 0 次下载
- 习题课(三) 成对数据的统计分析 试卷 0 次下载
- 章末综合检测(二) 随机变量及其分布(A、B卷) 试卷 0 次下载
课时跟踪检测(一) 分类加法计数原理与分步乘法计数原理
展开A.有29种不同的选法
B.有30种不同的选法
C.有59种不同的选法
D.有29×30种不同的选法
解析:选C 分两类:第一类从甲班选有29种方法,第二类从乙班选有30种方法.由分类加法计数原理得共有29+30=59种不同方法.故选C.
2.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( )
A.1 B.3
C.6 D.9
解析:选D 这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.
3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有( )
A.30个 B.42个
C.36个 D.35个
解析:选C 要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a有6种方法,故由分步乘法计数原理知共有6×6=36个虚数.
4.若5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法共有( )
A.10种 B.20种
C.25种 D.32种
解析:选D 5位同学依次报名,每人均有2种不同的选择,所以共有2×2×2×2×2=32种报名方法.
5.小红有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则小红选择穿的不同的衣服有( )
A.24种 B.14种
C.10种 D.9种
解析:选B 首先分两类.第一类是穿衬衣和裙子,由分步乘法计数原理知共有4×3=12种;第二类是穿连衣裙有2种.所以由分类加法计数原理知共有12+2=14种穿衣服的方式.
6.一学习小组有4名男生、3名女生,任选一名学生当数学课代表,共有________种不同选法;若选男女生各一名当组长,共有________种不同选法.
解析:任选一名当数学课代表可分两类,一类是从男生中选,有4种选法;另一类是从女生中选,有3种选法.根据分类加法计数原理,不同选法共有4+3=7(种).
若选男女生各一名当组长,需分两步:第1步,从男生中选一名,有4种选法;第2步,从女生中选一名,有3种选法.根据分步乘法计数原理,不同选法共有4×3=12(种).
答案:7 12
7.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有________种.
解析:分3类:买1本好书,买2本好书和买3本好书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).
答案:7
8.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.
解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),
即所求的不同的直线共有22条.
答案:22
9.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.
(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?
(2)若小明与爸爸分别就座,有多少种坐法?
解:(1)小明爸爸选凳子可以分两类:
第一类:选东面的空闲凳子,有8种坐法;
第二类:选西面的空闲凳子,有6种坐法.
根据分类加法计数原理,小明爸爸共有8+6=14种坐法.
(2)小明与爸爸分别就座,可以分两步完成:
第一步,小明先就座,从东西面共8+6=14个空闲凳子中选一个坐下,共14种坐法(小明坐下后,空闲凳子数变成13);
第二步,小明爸爸再就座,从东西面共13个空闲凳子中选一个坐下,共13种坐法.
由分步乘法计数原理,小明与爸爸分别就座共有14×13=182种坐法.
10.已知a∈{1,2,3},b∈{4,5,6,7},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示多少个不同的圆?
解:完成表示不同的圆这件事,可以分为三步:
第一步:确定a有3种不同的选取方法;
第二步:确定b有4种不同的选取方法;
第三步:确定r有2种不同的选取方法.
由分步乘法计数原理,方程(x-a)2+(y-b)2=r2可表示不同的圆共有3×4×2=24(个).
1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12 D.9
解析:选B 由题意可知,E→F有6种走法,F→G有3种走法,由分步乘法计数原理知,共有6×3=18种走法.
2.如图,一条电路从A处到B处接通时,可构成线路的条数为( )
A.8 B.6
C.5 D.3
解析:选B 从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为2×3=6,故选B.
3.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.
解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).
答案:7
4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列有多少个?
解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为eq \f(3,2)时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个.
5.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.
(1)若取出的两个球的颜色不同,有多少种取法?
(2)若取出的两个小球颜色相同,有多少种取法?
解:(1)若两个球颜色不同,则应在A,B袋中各取1个,或A,C袋中各取1个,或B,C袋中各取1个,共有1×2+1×3+2×3=11种取法.
(2)若两个球颜色相同,则应在B袋中取出两个,或在C袋中取出两个,共有1+3=4种取法.
课时跟踪检测(二) 分类加法计数原理与分步乘法计数原理的应用: 这是一份课时跟踪检测(二) 分类加法计数原理与分步乘法计数原理的应用,共5页。
高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理同步达标检测题: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理同步达标检测题,共22页。试卷主要包含了分类加法计数原理与集合类比等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时同步训练题: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时同步训练题,共5页。