![第1课时 旋转、旋转对称图形第1页](http://www.enxinlong.com/img-preview/2/3/13985803/3/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第2页](http://www.enxinlong.com/img-preview/2/3/13985803/3/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第3页](http://www.enxinlong.com/img-preview/2/3/13985803/3/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第4页](http://www.enxinlong.com/img-preview/2/3/13985803/3/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第5页](http://www.enxinlong.com/img-preview/2/3/13985803/3/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第6页](http://www.enxinlong.com/img-preview/2/3/13985803/3/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第7页](http://www.enxinlong.com/img-preview/2/3/13985803/3/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第1课时 旋转、旋转对称图形第8页](http://www.enxinlong.com/img-preview/2/3/13985803/3/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第1页](http://www.enxinlong.com/img-preview/2/3/13985803/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第2页](http://www.enxinlong.com/img-preview/2/3/13985803/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第3页](http://www.enxinlong.com/img-preview/2/3/13985803/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第4页](http://www.enxinlong.com/img-preview/2/3/13985803/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第5页](http://www.enxinlong.com/img-preview/2/3/13985803/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第6页](http://www.enxinlong.com/img-preview/2/3/13985803/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第7页](http://www.enxinlong.com/img-preview/2/3/13985803/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第2课时 中心对称与中心对称图形第8页](http://www.enxinlong.com/img-preview/2/3/13985803/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第1页](http://www.enxinlong.com/img-preview/2/3/13985803/2/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第2页](http://www.enxinlong.com/img-preview/2/3/13985803/2/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第3页](http://www.enxinlong.com/img-preview/2/3/13985803/2/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第4页](http://www.enxinlong.com/img-preview/2/3/13985803/2/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第5页](http://www.enxinlong.com/img-preview/2/3/13985803/2/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第6页](http://www.enxinlong.com/img-preview/2/3/13985803/2/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第7页](http://www.enxinlong.com/img-preview/2/3/13985803/2/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第3课时 在平面直角坐标系中对图形进行旋转变换第8页](http://www.enxinlong.com/img-preview/2/3/13985803/2/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![24.1 第1课时 旋转、旋转对称图形第1页](http://www.enxinlong.com/img-preview/2/3/13985803/5/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![24.1 第2课时 中心对称与中心对称图形第1页](http://www.enxinlong.com/img-preview/2/3/13985803/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![24.1 第3课时 在平面直角坐标系中对图形进行旋转变换第1页](http://www.enxinlong.com/img-preview/2/3/13985803/4/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:沪科版数学九下同步课时课件PPT+章末复习课件(送教案)全套
- 24.2圆的基本性质(4课时)课件+教案 课件 3 次下载
- 24.3圆周角(2课时)课件+教案 课件 3 次下载
- 24.4直线与圆的位置关系(3课时)课件+教案 课件 4 次下载
- 24.5 三角形的内切圆 课件+教案 课件 4 次下载
- 24.6正多边形与圆(2课时)课件+教案 课件 5 次下载
初中数学沪科版九年级下册24.1.1 图形的旋转优质课ppt课件
展开
这是一份初中数学沪科版九年级下册24.1.1 图形的旋转优质课ppt课件,文件包含第2课时中心对称与中心对称图形pptx、第1课时旋转旋转对称图形pptx、第3课时在平面直角坐标系中对图形进行旋转变换pptx、241第1课时旋转旋转对称图形doc、241第2课时中心对称与中心对称图形doc、241第3课时在平面直角坐标系中对图形进行旋转变换doc等6份课件配套教学资源,其中PPT共79页, 欢迎下载使用。
24.1 旋转第2课时 中心对称与中心对称图形 1.理解中心对称和中心对称图形的定义,掌握中心对称图形的性质(重点);2.能够依据中心对称图形的定义判断某图形是否为中心对称图形(难点).一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称的性质 如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是( )A.3B.6C.8D.12解析:设AB边上的高为h,因为△AOB的面积是12,AB=3,所以×3×h=12,所以h=8.又因为△AOB与△DOC成中心对称,△COD≌△AOB,所以△DOC中CD边上的高是8.故选C.方法总结:成中心对称的两个图形全等,全等三角形的对应高相等.探究点二:中心对称图形的性质与识别【类型一】 中心对称图形的识别 下列标志图中,既是轴对称图形,又是中心对称图形的是( )解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.【类型二】 与中心对称图形有关的作图 如图,网格中有一个四边形和两个三角形.(1)请你分别画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.方法总结:作中心对称图形的一般步骤:(1)确定具有代表性的点(如线段的端点);(2)作出每个代表性点的对称点;(3)按照原图形的形状顺次连接各个对称点.【类型三】 中心对称图形的性质及应用 如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.解析:观察图中阴影部分,可以利用中心对称图形的性质进行转化,将复杂问题简单化.解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC中.又因为AB=2,BC=3,所以Rt△ADC的面积为×3×2=3,即图中阴影部分的面积为3.方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.【类型四】 平面直角坐标系中的中心对称 已知:如图,E(-4,2),F(-1,-1),以O为中心,作△EFO的中心对称图形,则点E的对应点E′的坐标为________.解析:由中心对称可得到新的点与原来的点关于原点对称.∵E(-4,2),∴点E的对应点E′的坐标为 (4,-2),故答案为(4,-2).方法总结:两点关于原点中心对称,横纵坐标均互为相反数.三、板书设计1.中心对称的定义与性质成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.2.中心对称图形把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心. 在教学过程中,应该鼓励学生进行自主探究,自己动手去探索中心对称和中心对称图形的特点,加深对新知识的认识和理解.教师在课堂上起辅助作用,引导学生自己解决问题,注重培养学生的独立意识.
相关课件
这是一份沪科版九年级下册24.1.2 中心对称精品ppt课件,文件包含241旋转第2课时课件pptx、241旋转第2课时教案docx、241旋转第2课时导学案docx等3份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
这是一份初中沪科版24.1.1 图形的旋转获奖课件ppt,文件包含241旋转第1课时课件pptx、241旋转第1课时教案docx、241旋转第1课时导学案docx等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。
这是一份初中数学沪科版九年级下册24.1.1 图形的旋转习题课件ppt,共17页。PPT课件主要包含了旋转中心,旋转角,旋转对称图形,°-α等内容,欢迎下载使用。