所属成套资源:2023中考数学全国通用专题备考试卷[必考重点专题]
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题15 圆的问题(原卷版+解析版) 试卷 11 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题16 扇形圆锥(含圆)面积类问题(原卷版+解析版) 试卷 10 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题17 函数的图像与性质(原卷版+解析版) 试卷 12 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题19 函数解析式问题(原卷版+解析版) 试卷 11 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题20 统计与概率问题(原卷版+解析版) 试卷 11 次下载
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题18 最值问题(原卷版+解析版)
展开
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题18 最值问题(原卷版+解析版),文件包含专题18最值问题解析版docx、专题18最值问题原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
2023年中考数学二轮冲刺精准练新策略(全国通用)第二篇 必考的重点专题 专题18 最值问题 1. (2022浙江金华)如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A. B. C. D. 【答案】C【解析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;∵AB为底面直径,∴将圆柱侧面沿“剪开”后, B点在长方形上面那条边的中间,∵两点之间线段最短,故选: C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.2.(2022四川遂宁) 如图,D、E、F分别是三边上的点,其中,BC边上的高为6,且DE//BC,则面积的最大值为( )A. 6 B. 8 C. 10 D. 12【答案】A【解析】过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设,根据,证明,根据相似三角形对应高的比等于相似比得到,列出面积的函数表达式,根据配方法求最值即可.如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设,,,,,,,当时,S有最大值,最大值为6.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.3. (2022浙江杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )A. B. C. D. 【答案】D【解析】要使△ABC的面积S=BC•h的最大,则h要最大,当高经过圆心时最大.当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,如图所示,∵AD⊥BC,∴BC=2BD,∠BOD=∠BAC=θ,在Rt△BOD中,sinθ= ,cosθ=,∴BD=sinθ,OD=cosθ,∴BC=2BD=2sinθ,AD=AO+OD=1+cosθ,∴S△ABC=AD•BC=•2sinθ(1+cosθ)=sinθ(1+cosθ).故选:D.【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.4. (2022四川凉山)已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.【答案】6【解析】根据a-b2=4得出,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴将代入a2-3b2+a-14中得:∵∴当a=4时,取得最小值为6∴的最小值为6∵∴的最小值6故答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.5. (2022四川自贡)如图,矩形中,,是的中点,线段在边上左右滑动;若,则的最小值为____________.【答案】【解析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.【详解】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小, ∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1, ∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1∴DG′=AD+A G'=2+1=3,DH=4-1=3,∴,即的最小值为.故答案为:【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.6. (2022广西贺州)如图,在矩形ABCD中,,E,F分别是AD,AB的中点,的平分线交AB于点G,点P是线段DG上的一个动点,则的周长最小值为__________.【答案】【解析】在CD上取点H,使DH=DE,连接EH,PH,过点F作FK⊥CD于点K,可得DG垂直平分EH,从而得到当点F、P、H三点共线时,的周长最小,最小值为FH+EF,再分别求出EF和FH,即可求解.如图,在CD上取点H,使DH=DE,连接EH,PH,过点F作FK⊥CD于点K,在矩形ABCD中,∠A=∠ADC=90°,AD=BC=6,CD=AB=8,∴△DEH为等腰直角三角形,∵DG平分∠ADC,∴DG垂直平分EH,∴PE=PH,∴的周长等于PE+PF+EF=PH+PF+EF≥FH+EF,∴当点F、P、H三点共线时,的周长最小,最小值为FH+EF,∵E,F分别是AD,AB的中点,∴AE=DE=DH=3,AF=4,∴EF=5,∵FK⊥CD,∴∠DKF=∠A=∠ADC=90°,∴四边形ADKF为矩形,∴DK=AF=4,FK=AD=6,∴HK=1,∴,∴FH+EF=,即的周长最小为.故答案为:【点睛】本题主要考查了最短距离问题,矩形的判定和性质,勾股定理等知识,明确题意,准确得到当点F、P、H三点共线时,的周长最小,最小值为FH+EF是解题的关键.7. (2022江苏连云港)如图,四边形为平行四边形,延长到点,使,且.(1)求证:四边形为菱形;(2)若是边长为2的等边三角形,点、、分别在线段、、上运动,求的最小值.【答案】(1)证明见解析 (2)【解析】【分析】(1)先根据四边形为平行四边形的性质和证明四边形为平行四边形,再根据,即可得证;(2)先根据菱形对称性得,得到,进一步说明的最小值即为菱形的高,再利用三角函数即可求解.【小问1详解】证明:∵四边形是平行四边形,∴,,∵,∴,又∵点在的延长线上,∴,∴四边形为平行四边形,又∵,∴四边形为菱形.【小问2详解】解:如图,由菱形对称性得,点关于的对称点在上,∴,当、、共线时,,过点作,垂足为,∵,∴的最小值即为平行线间的距离的长,∵是边长为2的等边三角形,∴在中,,,,∴,∴的最小值为.【点睛】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.8.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣2【答案】C【解析】∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.9. 二次函数y=﹣2x2﹣4x+5的最大值是 .【答案】7【解析】y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.10.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=,则△PMN的周长的最小值为 .【答案】【解析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=OC=×3=6.本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.11.已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大?【答案】见解析。【解析】本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 作DE⊥AB于E,则 x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.12 .如图是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?【答案】即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.【解析】分析与解 设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.13.已知抛物线的对称轴为直线x=1,其图像与轴相交于、两点,与轴交于点。(1)求,的值;(2)直线l与轴交于点。 ①如图1,若l∥轴,且与线段及抛物线分别相交于点、,点关于直线的对称点为,求四边形面积的最大值; ②如图2,若直线l与线段相交于点,当△PCQ∽△ CAP时,求直线l的表达式。【答案】见解析。【解析】(1)由题可知 解得(2)①由题可知, ∴ 由(1)可知,∴:设,则∴∴ ∴当时,四边形的面积最大,最大值为②由(1)可知由∽可得∴ ∴由,可得∴作于点,设,则∴,∴即 解得∴ ∴l:
相关试卷
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题05 反比例函数的k值问题(原卷版+解析版),文件包含专题05反比例函数的k值问题解析版docx、专题05反比例函数的k值问题原卷版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 图形位似问题(原卷版+解析版),文件包含专题04图形位似问题解析版docx、专题04图形位似问题原卷版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题03 黄金分割问题(原卷版+解析版),文件包含专题03黄金分割问题解析版docx、专题03黄金分割问题原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。