终身会员
搜索
    上传资料 赚现金

    【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 数学史(原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题01 数学史(原卷版) .docx
    • 解析
      专题01 数学史(解析版) .docx
    专题01 数学史(原卷版) 第1页
    专题01 数学史(原卷版) 第2页
    专题01 数学史(原卷版) 第3页
    专题01 数学史(解析版) 第1页
    专题01 数学史(解析版) 第2页
    专题01 数学史(解析版) 第3页
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 数学史(原卷版+解析版)

    展开

    这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 数学史(原卷版+解析版),文件包含专题01数学史解析版docx、专题01数学史原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。


    2023年中考数学二轮冲刺精准练新策略(全国通用)

    第五篇 中考数学冷门专题

    专题01 数学史

    1.2022甘肃威武) 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为(  

    A.  B.  C.  D.

    2. 2022辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是(   

    A.  B.

    C.  D.

    3. 2022江苏扬州)《孙子算经》是我国古代经典数学名著,其中有一道鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有只,兔有只,那么可列方程组为(   

    A.  B.  C.  D.

    4. 2022内蒙古通辽)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(   

    A.  B.  C.  D.

    5. 2022长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.

    6. 2022贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数的系数与相应的常数项,即可表示方程,则 表示的方程是_______.

    7. 2022湖北孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3455121372425;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:681081517;…,若此类勾股数的勾为2mm3m为正整数),则其弦是________(结果用含m的式子表示).

    8. 2022湖北宜昌)中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法.请计算以下涉及“负数”的式子的值:________.

    9. 2022湖南株洲)中国元代数学家朱世杰所著《四元玉鉴》记载有“锁套吞容”之“方田圆池结角池图”.“方田一段,一角圆池占之.”意思是说:“一块正方形田地,在其一角有一个圆形的水池(其中圆与正方形一角的两边均相切)”,如图所示.问题:此图中,正方形一条对角线与⊙相交于点(点在点的右上方),若的长度为10丈,⊙的半径为2丈,则的长度为_________丈.

    10. 2022江苏连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.

    11.2022湖南株洲)阅读材料:十六世纪的法国数学家弗朗索瓦·韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式时,关于的一元二次方程的两个根有如下关系:”.此关系通常被称为“韦达定理”.已知二次函数

    (1)若,且该二次函数的图象过点,求的值;

    (2)如图所示,在平面直角坐标系中,该二次函数的图象与轴相交于不同的两点,其中,且该二次函数的图象的顶点在矩形的边上,其对称轴与轴、分别交于点轴相交于点,且满足

    ①求关于的一元二次方程的根的判别式的值;

    ②若,令,求的最小值.

    12.2022上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.

    (1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含ab的代数式表示)

    (2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF3米,求灯杆AB的高度

    13. 古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是abc,记p,那么三角形的面积为S.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为abc,若a5b6c7,则△ABC的面积为(  )

    A6 B6 C18 D

    14.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(  )

    A.直角三角形的面积 

    B.最大正方形的面积 

    C.较小两个正方形重叠部分的面积 

    D.最大正方形与直角三角形的面积和

    152021吉林)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为(  )

    Ax+x+x33 Bx+x+x33 

    Cx+x+x+x33 Dx+x+xx33

    162021贵州毕节)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是(  )

    A B 

    C D

    17. 2021辽宁盘锦)“今有井径五尺,不知其深,立五尺木于井上,从末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由示意图获得.设井深为尺,所列方程正确的是(   

    A.  B.  C.  D.

    18.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+bnn为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”

    a+b0=1

    a+b1a+b

    a+b2a2+2ab+b2

    a+b3a3+3a2b+3ab2+b3

    a+b4a4+4a3b+6a2b2+4ab3+b4

    a+b5a5+5a4b+10a3b2+10a2b3+5ab4+b5

    则(a+b9展开式中所有项的系数和是(  )

    A.128 B.256 C.512 D.1024

    19.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为  

    202021江苏盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0910个数字出现的频率趋于稳定接近相同.

    1)从π的小数部分随机取出一个数字,估计数字是6的概率为   

    2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)

    21.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数VVertex)、棱数EEdge)、面数FFlatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.

    (1)观察下列多面体,并把下表补充完整:

    名称

    三棱锥

    三棱柱

    正方体

    正八面体

    图形

    顶点数V

    4

    6

    8

      

    棱数E

    6

      

    12

      

    面数F

    4

    5

      

    8

    (2)分析表中的数据,你能发现VEF之间有什么关系吗?请写出关系式:     

    6,9,12,6,V+FE=2.

    相关试卷

    【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 新定义型问题(原卷版+解析版):

    这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 新定义型问题(原卷版+解析版),文件包含专题01新定义型问题解析版docx、专题01新定义型问题原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 北京冬奥会与中考数学(原卷版+解析版):

    这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 北京冬奥会与中考数学(原卷版+解析版),文件包含专题02疫情中的中考数学问题解析版docx、专题02疫情中的中考数学问题原卷版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 特殊函数(原卷版+解析版):

    这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 特殊函数(原卷版+解析版),文件包含专题04特殊函数解析版docx、专题04特殊函数原卷版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 数学史(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map