所属成套资源:2023中考数学全国通用专题备考试卷[冷门专题]
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题02 尺规作图(原卷版+解析版) 试卷 1 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题03 分母有理化(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 特殊函数(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题05 定义命题定理与证明(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题06 整体思想运用(原卷版+解析版) 试卷 0 次下载
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 数学史(原卷版+解析版)
展开这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 数学史(原卷版+解析版),文件包含专题01数学史解析版docx、专题01数学史原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
2023年中考数学二轮冲刺精准练新策略(全国通用)
第五篇 中考数学冷门专题
专题01 数学史
1.(2022甘肃威武) 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为( )
A. B. C. D.
2. (2022辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是( )
A. B.
C. D.
3. (2022江苏扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有只,兔有只,那么可列方程组为( )
A. B. C. D.
4. (2022内蒙古通辽)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是( )
A. B. C. D.
5. (2022长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.
6. (2022贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数,的系数与相应的常数项,即可表示方程,则 表示的方程是_______.
7. (2022湖北孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).
8. (2022湖北宜昌)中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法.请计算以下涉及“负数”的式子的值:________.
9. (2022湖南株洲)中国元代数学家朱世杰所著《四元玉鉴》记载有“锁套吞容”之“方田圆池结角池图”.“方田一段,一角圆池占之.”意思是说:“一块正方形田地,在其一角有一个圆形的水池(其中圆与正方形一角的两边均相切)”,如图所示.问题:此图中,正方形一条对角线与⊙相交于点、(点在点的右上方),若的长度为10丈,⊙的半径为2丈,则的长度为_________丈.
10. (2022江苏连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.
11.(2022湖南株洲)阅读材料:十六世纪的法国数学家弗朗索瓦·韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式时,关于的一元二次方程的两个根、有如下关系:,”.此关系通常被称为“韦达定理”.已知二次函数.
(1)若,,且该二次函数的图象过点,求的值;
(2)如图所示,在平面直角坐标系中,该二次函数的图象与轴相交于不同的两点、,其中、,且该二次函数的图象的顶点在矩形的边上,其对称轴与轴、分别交于点、,与轴相交于点,且满足.
①求关于的一元二次方程的根的判别式的值;
②若,令,求的最小值.
12.(2022上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.
(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)
(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度
13. 古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为( )
A.6 B.6 C.18 D.
14.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )
A.直角三角形的面积
B.最大正方形的面积
C.较小两个正方形重叠部分的面积
D.最大正方形与直角三角形的面积和
15.(2021吉林)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为( )
A.x+x+x=33 B.x+x+x=33
C.x+x+x+x=33 D.x+x+x﹣x=33
16.(2021贵州毕节)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是( )
A. B.
C. D.
17. (2021辽宁盘锦)“今有井径五尺,不知其深,立五尺木于井上,从末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由示意图获得.设井深为尺,所列方程正确的是( )
A. B. C. D.
18.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
…
则(a+b)9展开式中所有项的系数和是( )
A.128 B.256 C.512 D.1024
19.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .
20.(2021江苏盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定接近相同.
(1)从π的小数部分随机取出一个数字,估计数字是6的概率为 ;
(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)
21.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.
(1)观察下列多面体,并把下表补充完整:
名称 | 三棱锥 | 三棱柱 | 正方体 | 正八面体 |
图形 | ||||
顶点数V | 4 | 6 | 8 |
|
棱数E | 6 |
| 12 |
|
面数F | 4 | 5 |
| 8 |
(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式: .
6,9,12,6,V+F﹣E=2.
相关试卷
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 新定义型问题(原卷版+解析版),文件包含专题01新定义型问题解析版docx、专题01新定义型问题原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 北京冬奥会与中考数学(原卷版+解析版),文件包含专题02疫情中的中考数学问题解析版docx、专题02疫情中的中考数学问题原卷版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 特殊函数(原卷版+解析版),文件包含专题04特殊函数解析版docx、专题04特殊函数原卷版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。