- (新高考)高考数学一轮基础复习讲义7.1不等关系与不等式(2份打包,教师版+原卷版) 试卷 0 次下载
- (新高考)高考数学一轮基础复习讲义7.2一元二次不等式(2份打包,教师版+原卷版) 试卷 0 次下载
- (新高考)高考数学一轮基础复习讲义7.4基本不等式及应用(2份打包,教师版+原卷版) 试卷 0 次下载
- (新高考)高考数学一轮基础复习讲义8.1空间几何体、三视图、直观图(2份打包,教师版+原卷版) 试卷 0 次下载
- (新高考)高考数学一轮基础复习讲义8.4直线、平面平行(2份打包,教师版+原卷版) 试卷 0 次下载
- (新高考)高考数学一轮基础复习讲义8.5直线、平面垂直(2份打包,教师版+原卷版) 试卷 0 次下载
(新高考)高考数学一轮基础复习讲义6.4数列求和(2份打包,教师版+原卷版)
展开
1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.( )
(2)当n≥2时,=(-).( )
(3)求Sn=a+2a2+3a3+…+nan之和时,只要把上式等号两边同时乘以a即可根据错位相减法求得.( )
(4)数列{+2n-1}的前n项和为n2+.( )
(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.( )
2、设{an}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则{an}的前n项和Sn等于( )
A. B.
C. D.n2+n
3、数列{an}中,an=,若{an}的前n项和Sn=,则n等于( )
A.2 016 B.2 017
C.2 018 D.2 019
4、数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于( )
A.200 B.-200 C.400 D.-400
5、数列{an}的通项公式为an=ncos ,其前n项和为Sn,则S2 017=________.
题型一 分组转化法求和
例1 已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
引申探究
例1(2)中,求数列{bn}的前n项和Tn.
【同步练习】
1、已知数列{an}的通项公式是an=2·3n-1+(-1)n·(ln 2-ln 3)+(-1)nnln 3,求其前n项和Sn.
题型二 错位相减法求和
例2 已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=,求数列{cn}的前n项和Tn.
【同步练习】
1、设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.
(1) 求数列{an},{bn}的通项公式;
(2) 当d>1时,记cn=,求数列{cn}的前n项和Tn.
1.等差数列的前n项和公式
Sn==na1+d.
2.等比数列的前n项和公式
Sn=
3.一些常见数列的前n项和公式
(1)1+2+3+4+…+n=.
(2)1+3+5+7+…+2n-1=n2.
(3)2+4+6+8+…+2n=n(n+1).
(4)12+22+…+n2=.
【知识拓展】
数列求和的常用方法
(1)公式法
等差、等比数列或可化为等差、等比数列的可直接使用公式求和.
(2)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法
把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.
常见的裂项公式
①=-;
②=;
③=-.
(4)倒序相加法
把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法
主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.
(6)并项求和法
一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
题型三 裂项相消法求和
命题点1 形如an=型
例3 Sn为数列{an}的前n项和.已知an>0,a+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.
例4 已知函数f(x)=xa的图象过点(4,2),令an=,n∈N*.记数列{an}的前n项和为Sn,则S2 017=________.
【同步练习】
1、在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S=an.
(1)求Sn的表达式;
(2)设bn=,求{bn}的前n项和Tn.
题型四 数列求和的综合应用
例5 正项数列{an}的前n项和Sn满足:S-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.
【同步练习】1、在数列{an}中,已知a1=1,an+1=.
(1)若t=0,求数列{an}的通项公式;
(2)若t=1,求证:≤+++…+<.
题型五 四审结构定方案
例6 已知数列{an}的前n项和Sn=-n2+kn(其中k∈N*),且Sn的最大值为8.
(1)确定常数k,并求an;
(2)设数列的前n项和为Tn,求证:Tn<4.
一、分组转化法求和的常见类型
(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.
(2)通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.
二、错位相减法求和时的注意点
(1)要善于识别题目类型,特别是等比数列公比为负数的情形;
(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;
(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.
三、数列和其他知识的综合,可先确定数列项的递推关系,求出数列通项或前n项和;也可通过放缩法适当变形后再求和,进而证明一些不等式.
1.数列1,3,5,7,…,(2n-1)+,…的前n项和Sn的值等于( )
A.n2+1- B.2n2-n+1-
C.n2+1- D.n2-n+1-
2.设等比数列{an}的前n项和为Sn,已知a1=2 016,且an+2an+1+an+2=0(n∈N*),则S2 016等于( )
A.0 B.2 016
C.2 015 D.2 014
3.等差数列{an}的通项公式为an=2n+1,其前n项和为Sn,则数列的前10项的和为( )
A.120 B.70
C.75 D.100
4.在数列{an}中,若an+1+(-1)nan=2n-1,则数列{an}的前12项和等于( )
A.76 B.78
C.80 D.82
5.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于( )
A.0 B.100
C.-100 D.10 200
6.设数列{an}的通项公式为an=2n-7,则|a1|+|a2|+…+|a15|等于( )
A.153 B.210
C.135 D.120
7.已知数列{an}的通项公式为an=,若前n项和为10,则项数n为________.
8.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是________.
9.若已知数列的前四项是,,,,则数列的前n项和为__________.
*10.已知正项数列{an}的前n项和为Sn,任意n∈N*,2Sn=a+an.令bn=,设{bn}的前n项和为Tn,则在T1,T2,T3,…,T100中有理数的个数为________.
11.已知数列{an}中,a1=3,a2=5,且{an-1}是等比数列.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn.
12.已知{an}是等比数列,前n项和为Sn(n∈N*),且-=,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb}的前2n项和.
*13.若数列{an}的前n项和为Sn,点(an,Sn)在y=-x的图象上(n∈N*).
(1)求数列{an}的通项公式;
(2)若c1=0,且对任意正整数n都有cn+1-cn=求证:对任意正整数n≥2,
总有≤+++…+<.
(新高考)高考数学一轮复习讲练测 第7章 第4讲 数列求和 (2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习讲练测 第7章 第4讲 数列求和 (2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲练测第7章第4讲数列求和原卷版doc、新高考高考数学一轮复习讲练测第7章第4讲数列求和原卷版pdf、新高考高考数学一轮复习讲练测第7章第4讲数列求和教师版pdf、新高考高考数学一轮复习讲练测第7章第4讲数列求和教师版doc等4份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
新高考数学一轮复习《数列求和》课时练习(2份打包,教师版+原卷版): 这是一份新高考数学一轮复习《数列求和》课时练习(2份打包,教师版+原卷版),文件包含新高考数学一轮复习《数列求和》课时练习教师版doc、新高考数学一轮复习《数列求和》课时练习原卷版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
(新高考)高考数学一轮基础复习讲义6.3等比数列(2份打包,教师版+原卷版): 这是一份(新高考)高考数学一轮基础复习讲义6.3等比数列(2份打包,教师版+原卷版),文件包含新高考高考数学一轮基础复习讲义63等比数列教师版doc、新高考高考数学一轮基础复习讲义63等比数列原卷版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。