终身会员
搜索
    上传资料 赚现金

    2023年中考数学一轮复习——直击中考运算专题02 整式、乘法公式、因式分解(通用版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题02 整式、乘法公式、因式分解(原卷版).docx
    • 解析
      专题02 整式、乘法公式、因式分解(解析版).docx
    专题02 整式、乘法公式、因式分解(原卷版)第1页
    专题02 整式、乘法公式、因式分解(原卷版)第2页
    专题02 整式、乘法公式、因式分解(原卷版)第3页
    专题02 整式、乘法公式、因式分解(解析版)第1页
    专题02 整式、乘法公式、因式分解(解析版)第2页
    专题02 整式、乘法公式、因式分解(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考数学一轮复习——直击中考运算专题02 整式、乘法公式、因式分解(通用版)

    展开

    这是一份2023年中考数学一轮复习——直击中考运算专题02 整式、乘法公式、因式分解(通用版),文件包含专题02整式乘法公式因式分解解析版docx、专题02整式乘法公式因式分解原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
    专题02 整式、乘法公式、因式分解 【直击中考】考向一 整式的有关概念例题:2022·青海·统考中考真题)木材加工厂将一批木料按如图所示的规律依次摆放,则第个图中共有木料______.【答案】【分析】第一个图形有1根木料,第二个图形有根木料,第三个图形有根木料,第四个图形有根木料,以此类推,得到第个图形有根木料.【详解】解:第一个图形有根木料,第二个图形有根木料,第三个图形有根木料,第四个图形有木料,个图形有根木料,故答案为:【点睛】本题考查了图形的变化类问题,仔细观察,分析,归纳并发现其中的规律是解本题的关键.变式训练1.(2022·四川攀枝花·统考中考真题)下列各式不是单项式的为(    A3 Ba C D【答案】C【分析】数或字母的积组成的式子叫做单项式,根据单项式的定义进行判断即可.【详解】解:A3是单项式,故本选项不符合题意;Ba是单项式,故本选项不符合题意;C不是单项式,故本选项符合题意;D是单项式,故本选项不符合题意;故选:C【点睛】此题考查了单项式,熟练掌握单项式的定义是解题的关键.2.(2022·云南·中考真题)按一定规律排列的单项式:x3x25x37x49x5……,第n个单项式是(    A(2n-1) B(2n+1) C(n-1) D(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1xn故选:A【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.3.(2022·江西·统考中考真题)将字母CH按照如图所示的规律摆放,依次下去,则第4个图形中字母H的个数是(    A9 B10 C11 D12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为42个图中H的个数为4+23个图中H的个数为4+2×24个图中H的个数为4+2×3=10故选:B【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2H是解题的关键.4.(2022·广东·统考中考真题)单项式的系数为___________【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】的系数是3故答案为:3【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义.5.(2022·江苏宿迁·统考中考真题)按规律排列的单项式:,则第20个单项式是_____【答案】【分析】观察一列单项式发现偶数个单项式的系数为:奇数个单项式的系数为:而单项式的指数是奇数,从而可得答案.【详解】解:由偶数个单项式的系数为: 所以第20个单项式的系数为 1个指数为: 2个指数为: 3个指数为: 指数为 所以第20个单项式是: 故答案为:【点睛】本题考查的是单项式的系数与次数的含义,数字的规律探究,掌握从具体到一般的探究方法是解本题的关键.6.(2022·湖北恩施·统考中考真题)观察下列一组数:2,它们按一定规律排列,第n个数记为,且满足.则________________【答案】          【分析】由题意推导可得an=,即可求解.【详解】解:由题意可得:a1=2=a2=a3=2+=7a4=a5=同理可求a6=an=a2022=故答案为:【点睛】本题考查了数字的变化类,找出数字的变化规律是解题的关键. 考向二 整式的运算例题12022·湖南永州·统考中考真题)若单项式的与是同类项,则______【答案】6【分析】由题意直接根据同类项的概念,进行分析求解即可.【详解】解:单项式是同类项,故答案为:【点睛】本题主要考查同类项的定义,解答本题的关键是掌握同类项定义中的两个相同即相同字母的指数相同.例题22022·青海西宁·统考中考真题)=_________【答案】【分析】根据积的乘方法则计算即可.【详解】解:=故答案为:【点睛】本题考查了积的乘方,解题的关键是掌握运算法则.变式训练1.(2022·贵州黔西·统考中考真题)计算正确的是(    A B C D【答案】C【分析】先算积的乘方,再算同底数幂的乘法,即可得.【详解】= 故选:C【点睛】本题考查了单项式乘单项式,积的乘方,同底数幂的乘法,能灵活运用法则进行计算是解题的关键.2.(2022·西藏·统考中考真题)下列计算正确的是(  )A2ababab B2ab+ab2a2b2C4a3b22a2a2b D2ab2a2b3a2b2【答案】A【详解】A2abab=(21abab,选项正确,符合题意;B2ab+ab=(2+1ab3ab,选项不正确,不符合题意;C4a3b22a不是同类项,不能合并,选项不正确,不符合题意;D2ab2a2b不是同类项,不能合并,选项不正确,不符合题意.故选A【点睛】本题考查整式的加减.在计算的过程中,把同类项进行合并,不能合并的直接写在结果中即可.3.(2022·青海·统考中考真题)下列运算正确的是(    A BC D【答案】D【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A.选项,3x24x3不是同类项,不能合并,故该选项计算错误,不符合题意;B.选项,原式= ,故该选项计算错误,不符合题意;C.选项,原式= ,故该选项计算错误,不符合题意;D.选项,原式=,故该选项计算正确,符合题意;故选:D【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.4.(2022·甘肃武威·统考中考真题)计算:_____________【答案】【分析】根据单项式的乘法直接计算即可求解.【详解】解:原式=故答案为:【点睛】本题考查了单项式的乘法,正确的计算是解题的关键.5.(2022·内蒙古包头·中考真题)若一个多项式加上,结果得,则这个多项式为___________【答案】【分析】设这个多项式为A,由题意得:,求解即可.【详解】设这个多项式为A,由题意得:故答案为:【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.6.(2022·山东威海·统考中考真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn_____【答案】1【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m-n+4,第三行中间数字为n-6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m可得关于mn方程组,解出即可.【详解】如图,根据题意,可得第二行的数字之和为:m+2+(-2)=m可知第三行左边的数字为:m-(-4)-m=4第一行中间的数字为:m-n-(-4)=m-n+4第三行中间数字为m-2-(m-n+4)=n-6第三行右边数字为:m-n-(-2)=m-n+2再根据对角线上的三个数字之和相等且都等于m可得方程组为: 解得 故答案为:1【点睛】本题考查了有理数加法,列代数式,以及二元一次方程组,解题的关键是根据表格,利用每行,每列,每条对角线上的三个数之和相等列方程.7.(2022·湖北黄冈·统考中考真题)先化简,再求值:4xy2xy-(-3xy),其中x2y=-1【答案】【分析】根据整式的加减运算化简,然后将字母的值代入即可求解.【详解】解:原式=4xy2xy+3xy5xyx2y=-1时,原式=【点睛】本题考查了整式加减的化简求值,正确的计算是解题的关键.8.(2022·四川南充·中考真题)先化简,再求值:,其中【答案】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式==x=时,原式==3+1-=-【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键. 考向三 与乘法公式有关的运算例题:2022·江苏盐城·统考中考真题)先化简,再求值:,其中【答案】-9【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:原式原式【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.变式训练1.(2022·甘肃兰州·统考中考真题)计算:    A B C D【答案】A【分析】根据完全平方公式展开即可.【详解】解:原式=故选:A【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.2.(2022·上海·统考中考真题)下列运算正确的是……  Aa²+a³=a6 B.(ab2 =ab2 C.(a+b²=a²+b² D.(a+b)(a-b=a² -b2【答案】D【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意;B.ab2 =a2b2,故此选项不符合题意;C.a+b²=a²+2ab+b²,故此选项不符合题意D.a+b)(a-b=a² -b2,故此选项符合题意故选:D【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.3.(2022·江苏南通·统考中考真题)已知实数mn满足,则的最大值为(    A24 B C D【答案】B【分析】先将所求式子化简为,然后根据求出,进而可得答案.【详解】解:的最大值为故选:B【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出的取值范围是解题的关键.4.(2022·湖南益阳·统考中考真题)已知mn同时满足2m+n32mn1,则4m2n2的值是 _____【答案】3【分析】观察已知和所求可知,,将代数式的值代入即可得出结论.【详解】解:2m+n32mn1故答案为:3【点睛】本题主要考查代数式求值,平方差公式的应用,熟知平方差公式的结构是解题关键.5.(2022·四川广安·统考中考真题)已知a+b=1,则代数式a2b2 +2b+9的值为________【答案】10【分析】根据平方差公式,把原式化为,可得,即可求解.【详解】解:a2b2 +2b+9 故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.6.(2022·黑龙江大庆·统考中考真题)已知代数式是一个完全平方式,则实数t的值为____________【答案】【分析】直接利用完全平方公式求解.【详解】解:代数式是一个完全平方式,解得故答案为:【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.7.(2022·湖北襄阳·统考中考真题)先化简,再求值:(a+2b2+a+2b)(a-2b+2ab-a),其中a-b+【答案】【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:原式= a-b+原式【点睛】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.8.(2022·广东广州·统考中考真题)已知T=(1)化简T(2)若关于的方程有两个相等的实数根,求T的值.【答案】(1)(2)T= 【分析】(1)根据整式的四则运算法则化简即可;(2)由方程有两个相等的实数根得到判别式△=4a²-4(-ab+1)=0即可得到,整体代入即可求解.1解:T==2解:方程有两个相等的实数根, T=【点睛】本题考查了整式的四则运算法则、一元二次方程的实数根的判别、整体思想,属于基础题,熟练掌握运算法则及一元二次方程的根的判别式是解题的关键. 考向四 因式分解例题:2022·贵州黔东南·统考中考真题)分解因式:_______【答案】##【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=故答案为【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.变式训练1.(2022·山东济宁·统考中考真题)下面各式从左到右的变形,属于因式分解的是(  A BC D【答案】C【分析】根据因式分解的定义对选项逐一分析即可.【详解】把一个多项式化成几个整式积的形式,这种变形叫做因式分解.A、右边不是整式积的形式,故不是因式分解,不符合题意;B、形式上符合因式分解,但等号左右不是恒等变形,等号不成立,不符合题意;C、符合因式分解的形式,符合题意;D、从左到右是整式的乘法,从右到左是因式分解,不符合题意;故选C【点睛】本题考查因式分解,解决本题的关键是充分理解并应用因式分解的定义.2.(2022·广西柳州·统考中考真题)把多项式a2+2a分解因式得(  )Aaa+2 Baa2 C.(a+22 D.(a+2)(a2【答案】A【分析】运用提公因式法进行因式分解即可.【详解】故选A【点睛】本题主要考查了因式分解知识点,掌握提公因式法是解题的关键.3.(2022·广西河池·统考中考真题)多项式因式分解的结果是(   )Axx4+4 B.(x+2)(x2 C.(x+22 D.(x22【答案】D【分析】根据完全平方公式进行因式分解即可.【详解】解:故选:D【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.4.(2022·江苏扬州·统考中考真题)分解因式:_____【答案】##【分析】先提取公因式,再用平方差公式即可求解.【详解】故答案:【点睛】本题考查了用提公因式法和平方差公式分解因式的知识.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.因式分解是恒等变形.因式分解必须分解到每一个因式都不能再分解为止.5.(2022·四川绵阳·统考中考真题)因式分解:_________【答案】【分析】先提取公因式,然后根据平方差公式因式分解即可求解.【详解】解:原式=故答案为:【点睛】本题考查了因式分解,正确的计算是解题的关键.6.(2022·广东广州·统考中考真题)分解因式:________【答案】【分析】直接提取公因式3a即可得到结果.【详解】解:故答案为:【点睛】本题考查因式分解,解本题的关键是熟练掌握因式分解时有公因式要先提取公因式,再考虑是否可以用公式法.7.(2022·山东济南·统考中考真题)因式分解:______【答案】【分析】原式利用完全平方公式分解即可.【详解】解:故答案为:【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键.8.(2022·湖北恩施·统考中考真题)因式分解:______【答案】【分析】先提公因式,再利用完全平方公式进行因式分解即可.【详解】解:原式故答案为:【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.9.(2022·贵州黔西·统考中考真题)已知,则的值为_____【答案】6【分析】将因式分解,然后代入已知条件即可求值.【详解】解: 故答案为:6【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.10.(2022·青海西宁·统考中考真题)八年级课外兴趣小组活动时,老师提出了如下问题:因式分解.观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式解法二:原式感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)类比(1)请用分组分解法将因式分解;挑战(2)请用分组分解法将因式分解;应用(3)“赵爽弦图是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,赵爽弦图是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a,斜边长是3,小正方形的面积是1.根据以上信息,先将因式分解,再求值.【答案】(1)(2)(3)9【分析】(1)直接将前两项和后两项组合,利用平方差公式再提取公因式,进而分解因式即可;2)先分组,利用完全平方公式再提取公因式,进而分解因式即可;3)分组,先提取公因式,利用完全平方公式分解因式,再由勾股定理以及面积得到,整体代入得出答案即可.【详解】(1)解:2)解:3)解:根据题意得原式【点睛】此题主要考查了分组分解法以及、提取公因式法、公式法分解因式以及勾股定理的应用,正确分组再运用公式法分解因式是解题关键.     
     

    相关试卷

    2023年中考数学一轮复习——直击中考几何专题06 填空题中之分类讨论思想(通用版):

    这是一份2023年中考数学一轮复习——直击中考几何专题06 填空题中之分类讨论思想(通用版),文件包含专题06填空题中之分类讨论思想解析版docx、专题06填空题中之分类讨论思想原卷版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。

    2023年中考数学一轮复习——直击中考几何专题专题10 用三角函数解决实际问题(通用版):

    这是一份2023年中考数学一轮复习——直击中考几何专题专题10 用三角函数解决实际问题(通用版),文件包含专题10用三角函数解决实际问题解析版docx、专题10用三角函数解决实际问题原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    2023年中考数学一轮复习——直击中考几何专题专题09 圆的综合问题(通用版):

    这是一份2023年中考数学一轮复习——直击中考几何专题专题09 圆的综合问题(通用版),文件包含专题09圆的综合问题解析版docx、专题09圆的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map