所属成套资源:新高考数学一轮复习讲义 (2份打包,解析版+原卷版)
新高考数学一轮复习讲义专题突破5第1课时范围、最值问题(2份打包,解析版+原卷版)
展开
这是一份新高考数学一轮复习讲义专题突破5第1课时范围、最值问题(2份打包,解析版+原卷版),文件包含新高考数学一轮复习讲义专题突破5第1课时范围最值问题含详解doc、新高考数学一轮复习讲义专题突破5第1课时范围最值问题原卷版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
高考专题突破五 高考中的圆锥曲线问题第1课时 范围、最值问题题型一 范围问题例1 (2016·天津)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围. 跟踪训练1 (2018·浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围. 题型二 最值问题 命题点1 利用三角函数有界性求最值例2 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|·|BF|的最小值是( )A.2 B. C.4 D.2命题点2 数形结合利用几何性质求最值例3 在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2018·天津模拟)已知椭圆C:+=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(1)求椭圆C的离心率;(2)若点M 在椭圆C上,不过原点O的直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求△OAB面积的最大值. 跟踪训练2 (2018·邢台模拟)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点). 1.已知P(x0,y0)是椭圆C:+y2=1上的一点,F1,F2是C的两个焦点,若·<0,则x0的取值范围是( )A. B.C. D.2.定长为4的线段MN的两端点在抛物线y2=x上移动,设点P为线段MN的中点,则点P到y轴距离的最小值为( )A.1 B. C.2 D.53.过抛物线y2=x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角θ≥,点A在x轴上方,则|FA|的取值范围是( )A. B.C. D.4.(2018·长春质检)已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,对于左支上任意一点P都有|PF2|2=8a|PF1|(a为实半轴长),则此双曲线的离心率e的取值范围是( )A.(1,+∞) B.(2,3] C.(1,3] D.(1,2]5.(2018·云南昆明一中摸底)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )A. B. C. D.16.已知M,N为双曲线-y2=1上关于坐标原点O对称的两点,P为双曲线上异于M,N的点,若直线PM的斜率的取值范围是,则直线PN的斜率的取值范围是( )A. B. C. D.∪7.椭圆C:+y2=1(a>1)的离心率为,F1,F2是C的两个焦点,过F1的直线l与C交于A,B两点,则|AF2|+|BF2|的最大值等于________.8.(2018·晋城模拟)已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,点P在双曲线的右支上,如果|PF1|=t|PF2|(t∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.9.(2018·海口模拟)已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1且垂直于x轴的直线与该双曲线的左支交于A,B两点,AF2,BF2分别交y轴于P,Q两点,若△PQF2的周长为16,则的最大值为________.10.(2018·上饶模拟)已知斜率为k的直线与椭圆+=1交于A,B两点,弦AB的中垂线交x轴于点P(x0,0),则x0的取值范围是____________.11.(2018·南昌测试)已知P是椭圆C:+=1(a>b>0)与抛物线E:y2=2px(p>0)的一个公共点,且椭圆与抛物线具有一个相同的焦点F.(1)求椭圆C及抛物线E的方程;(2)设过F且互相垂直的两动直线l1,l2,l1与椭圆C交于A,B两点,l2与抛物线E交于C,D两点,求四边形ACBD面积的最小值. 12.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上位于第一象限的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D.(1)若当点A的横坐标为3,且△ADF为等边三角形,求C的方程;(2)对于(1)中求出的抛物线C,若点D(x0,0),记点B关于x轴的对称点为E,AE交x轴于点P,且AP⊥BP,求证:点P的坐标为(-x0,0),并求点P到直线AB的距离d的取值范围. 13.已知双曲线Γ:-=1(a>0,b>0)的右顶点为A,与x轴平行的直线交Γ于B,C两点,记∠BAC=θ,若Γ的离心率为,则( )A.θ∈ B.θ=C.θ∈ D.θ=14.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最小值为__________.15.如图,由抛物线y2=12x与圆E:(x-3)2+y2=16的实线部分构成图形Ω,过点P(3,0)的直线始终与图形Ω中的抛物线部分及圆部分有交点,则|AB|的取值范围为( )A.[4,5] B.[7,8] C.[6,7] D.[5,6]16.已知椭圆C1:-=1与双曲线C2:+=1有相同的焦点,求椭圆C1的离心率e1的取值范围.
相关试卷
这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破1 范围、最值问题(含解析),共9页。
这是一份新高考数学一轮复习《高考大题突破练——范围与最值问题》课时练习(2份打包,教师版+原卷版),文件包含新高考数学一轮复习《高考大题突破练范围与最值问题》课时练习教师版doc、新高考数学一轮复习《高考大题突破练范围与最值问题》课时练习原卷版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份新高考数学一轮复习讲义专题突破5第2课时定点与定值问题(2份打包,解析版+原卷版),文件包含新高考数学一轮复习讲义专题突破5第2课时定点与定值问题含详解doc、新高考数学一轮复习讲义专题突破5第2课时定点与定值问题原卷版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。