搜索
    上传资料 赚现金
    第6章-6.3 对数函数(课件PPT)01
    第6章-6.3 对数函数(课件PPT)02
    第6章-6.3 对数函数(课件PPT)03
    第6章-6.3 对数函数(课件PPT)04
    第6章-6.3 对数函数(课件PPT)05
    第6章-6.3 对数函数(课件PPT)06
    第6章-6.3 对数函数(课件PPT)07
    第6章-6.3 对数函数(课件PPT)08
    还剩33页未读, 继续阅读
    下载需要35学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中苏教版 (2019)第6章 幂函数、指数函数和对数函数6.3 对数函数优秀课件ppt

    展开
    这是一份高中苏教版 (2019)第6章 幂函数、指数函数和对数函数6.3 对数函数优秀课件ppt,共41页。PPT课件主要包含了随堂小测等内容,欢迎下载使用。

    1.通过实例直观了解对数函数模型所刻画的数量关系,理解对数函数的概念,体会对数函数是一类重要的数学模型.2.能画出具体的对数函数的图象,探索并了解对数函数的性质.3.能利用对数函数的性质比较两个对数式值的大小,能研究一些对数函数有关的复合函数的定义域、值域、单调性等.4.知道指数函数y=ax(a>0,a≠1)与对数函数y=lgax(a>0,a≠1)互为反函数.核心素养:数学抽象、直观想象、逻辑推理、数学运算
    一、对数函数的概念一般地,函数y=lgax(a>0,a≠1)叫作对数函数,其中x是自变量,定义域是(0,+∞).【说明】(1)由指数式与对数式的关系,知对数函数的自变量x恰好是指数函数的函数值y,所以对数函数的定义域是(0,+∞).(2)对数函数中底数的限制条件与指数函数中相同,为a>0,且a≠1.(3)以10为底数的对数函数y=lg x叫作常用对数函数,以e为底数的对数函数y=ln x叫作自然对数函数.
    二、对数函数的图象与性质 1.对数函数的图象与性质一般地,对数函数y=lgax(a>0,a≠1)的图象和性质如下表:
    【说明】(1)对于对数函数的图象和性质,若底数a不确定,则需要分01两种情况讨论,这点与指数函数相同.(2)对数函数的图象都在y轴右侧的第一、四象限,过定点(1,0),且当x→0时,图象无限接近y轴.(3)对数函数的图象可以向上、向下无限延伸,值域为R.
    【巧记】 对数函数单调性的记忆口诀对数函数有两种,底数大小要分清.底数若是大于1,图象从左往右增.底数0到1之间,图象从左往右减.无论函数增和减,图象都过(1,0)点.
    2.指数函数与对数函数的比较
    示例 函数y=lg2x的定义域是[1,64),则值域是( )A. RB.[0,+∞)C.[0,6)D.[0,64)
    【规律总结】对数值正负的规律(1)当a>1时,由对数函数y=lgax是增函数知:若01,则lgax>lga1=0.(2)当0lga1=0;若x>1,则lgax0;当a,x分别在两个区间时,有lgax<0.可简记为:同区间为正,异区间为负.
    【解析】 因为函数y=lg2x在(0,+∞)上是增函数,所以当x∈[1,64)时,y∈[0,6).
    3.底数的大小决定了对数函数图象的相对位置.(1)上下比较:在直线x=1的右侧,当a>1时,a越大,对数函数图象越靠近x轴;当0示例 如图所示的四条曲线是对数函数y=lgax,y=lgbx,y=lgcx,y=lgdx的图象,则a,b,c,d与1的大小关系为     .(按从大到小的顺序排)
    【解析】由题图,知对数函数y=lgax,y=lgbx的底数a>1,b>1,对数函数y=lgcx,y=lgdx的底数0a>1>d>c.
    四、反函数1.反函数的定义一般地,设A,B分别为函数y=f(x)的定义域和值域,如果由函数y=f(x)可解得唯一x=φ(y)也是一个函数(即对任意一个y∈B,都有唯一的x∈A与之对应),那么就称函数x=φ(y)是函数y=f(x)的反函数(inverse functin),记作x=f -1(y).根据指数式与对数式的互化,我们可以得到对数函数y=lgax(a>0,且a≠1,x∈(0,+∞))与指数函数y=ax(a>0,且a≠1,x∈R)互为反函数.
    2.反函数的性质(1)互为反函数的两个函数的图象关于直线y=x对称.若互为反函数的两个函数是同一个函数,则该函数的图象关于直线y=x对称.(2)若函数y=f(x)图象上有一点(a,b),则(b,a)必在其反函数的图象上;反之,若点(b,a)在反函数的图象上,则(a,b)必在其原函数的图象上.(3)反函数的定义域、值域分别是原函数的值域、定义域.(4)互为反函数的两个函数的单调性相同.
    示例 函数y=ln x+1(x>0)的反函数为( )A. y=ex+1(x∈R)B. y=ex-1(x∈R)C. y=ex+1(x>1)D. y=ex-1(x>1)
    【解题必备】求反函数的步骤(1)求出函数y=f(x)的值域;(2)由y=f(x)解出x=f -1(y);(3)把x=f -1(y)改写成y=f -1(x),并写出函数的定义域(原函数的值域).
    【解析】 ∵ ln x=y-1,∴ x=ey-1.在原函数中,由x>0知y=ln x+ 1∈R.故y=ln x+1(x>0)的反函数为y=ex-1(x∈R).
    五、对数型复合函数的单调性 对数型复合函数一般分为两类:y=f(lgax)型和y=lgaf(x)型.(1)对于对数型复合函数y=f(lgax)(a>0,a≠1)的单调性,一般用复合法判定,即令t=lgax,则只需研究t=lgax及y=f(t)的单调性即可.(2)对于对数型复合函数y=lgaf(x)(a>0,a≠1)的单调性,首先由f(x)>0确定函数的定义域,然后判断t=f(x)在定义域上的单调性,最后结合底数a>1或0示例 求函数f(x)=lg2(x2-2x)的单调区间.
    【方法技巧】用换元法求复合函数的单调区间求复合函数的单调区间的关键是分清内外两层函数,常采用换元法求解,忽略新元的取值范围是解题中的易错点.
    【解】  函数f(x)的定义域为(-∞,0)∪(2,+∞).设t=x2-2x.当x∈(-∞,0)时,t=x2-2x为减函数,则f(x)在(-∞,0)上为减函数;当x∈(2,+∞)时,t=x2-2x为增函数,则f(x)在(2,+∞)上为增函数.
    【类题通法】对数(型)函数定义域的求法1.求对数(型)函数的定义域时,除遵循前面求函数定义域的方法外,还要注意:(1)真数大于0;(2)底数大于0且不等于1.2.y=lga f(x)(a>0,且a≠1)型函数的定义域就是f(x)>0的解集.3.y=f(lgax)型函数的定义域保证f(x)的解析式有意义,保证真数大于0.
    二、对数型函数的图象及应用1.对数型函数图象过定点问题例  2 函数y=lga(x+1)+1(a>0且a≠1)的图象恒过点( )A.(0,1)B.(0,2)C.(-1,1)D.(-1,2)
    【方法技巧】解答函数y=m+lga f(x)(a>0且a≠1)的图象恒过定点的问题时,只需令f(x)=1求出x,即得定点(x,m).
    【解析】 要求函数y=lga(x+1)+1(a>0且a≠1)的图象恒过的点,只需令x+1=1,则x=0,y=1,所以该点的坐标为(0,1).
    2.对数型函数图象的判定与识别例  3 已知a>0,且a≠1,则函数y=ax与y=lga(-x)的图象只能是( )
    A     B     C      D
    【解析】(方法1)若01,则函数y=ax是增函数且过点(0,1),而函数y=lga(-x)是减函数且过点(-1,0),只有B中图象符合.(方法2)首先指数函数y=ax的图象只可能在x轴上方区域,函数y=lga(-x)的图象只可能在y轴左侧区域,从而排除A,C;再看单调性,y=ax与y=lga(-x)的单调性正好相反,排除D.只有B中图象符合.
    【方法技巧】给出函数解析式,判断函数的图象,首先应考虑所给函数对应的基本初等函数是哪一个,其次找出函数图象经过的特殊点,考虑函数的性质(定义域、单调性、奇偶性等),最后综合得出函数的图象.此类题目经常以选择题的形式出现,常用排除法.
    3.对数型函数图象的变换例  4 作出函数y=|lg2(x+1)|+2的图象.
    (1)(2)(3)(4)         
    【分析】充分利用图象变换,即利用平移变换、翻折变换等作图.【解】第一步:作出y=lg2x的图象(如图(1));第二步:将y=lg2x的图象沿x轴向左平移1个单位长度,得到y=lg2(x+1)的图象(如图(2));第三步:将y=lg2(x+1)在x轴下方的图象以x轴为对称轴翻折到x轴的上方,得到y=|lg2(x+1)|的图象(如图(3));第四步:将y=|lg2(x+1)|的图象沿y轴向上平移2个单位长度,得到y=|lg2(x+1)|+2的图象(如图(4)).
    【类题通法】函数图象的变换规律(1)一般地,函数y=f(x+a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左或向右平移|a|个单位长度,再沿y轴向上或向下平移|b|个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y=f(|x-a|)的图象是关于直线x=a对称的轴对称图形;函数y=|f(x)|的图象与y=f(x)的图象在f(x)≥0的部分相同,在f(x)<0的部分关于x轴对称.
    【规律方法】(1)指数函数y=ax与对数函数y=lgax互为反函数.(2)互为反函数的两个函数的定义域、值域相反.(3)互为反函数的两个函数的图象关于直线y=x对称.
    【解析】  由y=f(x)是y=ax的反函数,可知f(x)=lgax(a>0,a≠1).再由f(2)=1,可知lga2=1,所以a=2,即f(x)=lg2x.
    【类题通法】对数式比较大小的三种类型和求解方法(1)底数相同时,利用对数函数单调性比较大小.(2)底数与真数均不相同时,借助中间值0或1比较大小.(3)真数相同时,可利用换底公式换成同底对数式,再比较大小,但要注意对数值的正负.
    2.解对数不等式例  8 (1)解不等式:lga(2x-5)>lga(x-1).(2)已知lg0.7(2x)【类题通法】常见的对数不等式的三种类型及解法(1)形如lgax>lgab的不等式,借助y=lgax的单调性求解,如果a的取值不确定,那么需分a>1与0b的不等式,应将b化为以a为底数的对数式的形式,再借助y=lgax的单调性求解;(3)形如lgax>lgbx的不等式,可利用图象求解.
    五、对数型复合函数问题1.对数型复合函数的单调性问题例  9 (1)函数f(x)=lg2(x2+2x-3)的单调递增区间为( )A.(-1,+∞)B.(1,+∞)C.(-∞,-1)D.(-∞,-3)(2)已知函数f(x)=lg2(3-ax)在[0,1]上是减函数,则a的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(1,3) D.(0,3)
    【方法技巧】对数型复合函数的单调性的求解方法对数型复合函数一般可分为两类:一类是外层函数为对数函数,即y=lga f(x);另一类是内层函数为对数函数,即y=f(lgax).(1)对于y=lga f(x)型的函数的单调性,有以下结论:函数y=lga f(x)的单调性与函数u=f(x)(f(x)>0)的单调性在a>1时相同,在02.对数型复合函数的值域与最值例10 已知函数f(x)=ln x+ln(a-x)的图象关于直线x=1对称,则函数f(x)的值域为( )A.(0,2)B.[0,+∞)C.(-∞,2]D.(-∞,0]
    【方法技巧】(1)求对数函数或与对数函数相关的复合函数的值域(最值)时,一般是根据单调性求解,若需要换元,则需考虑新元的取值范围.(2)对于形如y=lga f(x)(a>0,a≠1)的复合函数,其值域的求解步骤如下:①求复合函数的定义域;②分解成y=lgau,u=f(x)两个函数;③求u的取值范围;④利用y=lgau的单调性求解即可.
    【分析】  根据函数f(x)的图象关于直线x=1对称可得f(1+x)=f(1-x),由此可得a=2,即f(x)=ln x+ln(2-x),再结合函数的单调性和定义域求得值域.【解析】∵ 函数f(x)=ln x+ln(a-x)的图象关于直线x=1对称,∴ f(1-x)=f(1+x),即ln(1-x)+ln(a-1+x)=ln(1+x)+ln(a-1-x),∴ (1-x)(a-1+x)=(1+x)(a-1-x),整理得(a-2)x=0,∴ a=2,∴ f(x)=ln x+ln(2-x),定义域为(0,2).又f(x)=ln x+ln(2-x)=ln(2x-x2),当03.对数型复合函数的奇偶性例11 已知f(x)=lga(1+x),g(x)=lga(1- x)(a>0且a≠1).(1)求函数y=f(x)-g(x)的定义域;(2)判断函数y=f(x)-g(x)的奇偶性.
    10. 已知函数f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=2x+1.(1)求f(x),g(x)的解析式,并判断f(x)的单调性;(2)已知m>0,且m≠1,不等式f(lgm2)+f(-1)+2解:(1)由题可得f(-x)+g(-x)=2-x+1,则-f(x)+g(x)=2-x+1.又f(x)+g(x)=2x+1,所以f(x)=2x-2-x,g(x)=2x+2-x.因为y=2x在R上单调递增,y=2-x在R上单调递减,所以函数f(x)在R上单调递增.(2)f(lgm2)+f(-1)+2m,即01时,上式等价于22.综上可知,m∈(0,1)∪(2,+∞).
    11. 设函数f(x)=lg(ax-bx),其中a>0,b>0且a≠b.(1)求f(x)的定义域;(2)当a>1>b>0时,函数f(x)图象上是否存在不同两点,使过这两点的直线平行于x轴,并证明.
    相关课件

    高中数学第6章 幂函数、指数函数和对数函数6.3 对数函数课文内容课件ppt: 这是一份高中数学<a href="/sx/tb_c4002174_t3/?tag_id=26" target="_blank">第6章 幂函数、指数函数和对数函数6.3 对数函数课文内容课件ppt</a>,共60页。PPT课件主要包含了3对数函数,习题63,问题与探究等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.4 对数函数授课ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册第四章 指数函数与对数函数4.4 对数函数授课ppt课件,共23页。PPT课件主要包含了增函数,越来越快,越来越慢等内容,欢迎下载使用。

    数学必修 第一册4.4 对数函数集体备课ppt课件: 这是一份数学必修 第一册4.4 对数函数集体备课ppt课件,共33页。PPT课件主要包含了点击右图进入等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第6章-6.3 对数函数(课件PPT)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map