终身会员
搜索
    上传资料 赚现金

    2023教育部新课标四省联考(安徽省、云南省、、黑龙江省)高三下学期2月高考适应性考试数学含解析

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题含解析.docx
    • 练习
      2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题无答案.docx
    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题含解析第1页
    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题含解析第2页
    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题含解析第3页
    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题无答案第1页
    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题无答案第2页
    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题无答案第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023教育部新课标四省联考(安徽省、云南省、、黑龙江省)高三下学期2月高考适应性考试数学含解析

    展开

    这是一份2023教育部新课标四省联考(安徽省、云南省、、黑龙江省)高三下学期2月高考适应性考试数学含解析,文件包含2023届安徽省云南省吉林省黑龙江省高三下学期2月适应性测试数学试题含解析docx、2023届安徽省云南省吉林省黑龙江省高三下学期2月适应性测试数学试题无答案docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。


    数学
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 设,则( )
    A. i B. C. 1 D.
    【答案】A
    【解析】
    【分析】利用复数的乘法可求运算结果.
    【详解】,
    故选:A
    2. 设集合,,.若,,则( )
    A. B. C. 1 D. 3
    【答案】B
    【解析】
    【分析】根据包含关系结合交集的结果可求的值.
    【详解】因为,故,故或,
    若,则,,此时,符合;
    若,则,,此时,不符合;
    故选:B
    3. 甲、乙、丙、丁四名教师带领学生参加校园植树活动,教师随机分成三组,每组至少一人,则甲、乙在同一组的概率为( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】利用组合可求基本事件的总数,再根据排列可求随机事件含有的基本事件的总数,从而可求对应的概率.
    【详解】设“甲、乙在同一组”为事件,
    教师随机分成三组,每组至少一人的分法为,
    而甲、乙在同一组的分法有,故,
    故选:A.
    4. 平面向量与相互垂直,已知,,且与向量的夹角是钝角,则( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】设,则由题意得,解出方程,检验即可.
    【详解】设,则由题意得,即,
    解得或,
    设,当时,此时,
    又因为向量夹角范围为,故此时夹角为锐角,舍去;
    当时,此时,故此时夹角为钝角,
    故选:D.
    5. 已知点A,B,C为椭圆D的三个顶点,若是正三角形,则D的离心率是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】首先由题得到,结合,即可求得.
    【详解】无论椭圆焦点位于轴或轴,根据点,,为椭圆的三个顶点,
    若是正三角形,则,即,即,
    即有,则,解得.
    故选:C.
    6. 三棱锥中,平面,.若,,则该三棱锥体积的最大值为( )
    A. 2 B. C. 1 D.
    【答案】D
    【解析】
    【分析】先利用线面垂直的判定定理与性质定理依次证得平面、与,从而利用基本不等式求得,进而得到,由此得解.
    【详解】因为平面,平面,所以,
    又,,平面,所以平面,
    因为平面,所以,
    在中,,,则,
    因为平面,平面,所以,
    在中,不妨设,则由得,
    所以,
    当且仅当且,即时,等号成立,
    所以,
    所以该三棱锥体积的最大值为.
    故选:D.
    .
    7. 设函数,在上的导函数存在,且,则当时( )
    A. B.
    C. D.
    【答案】C
    【解析】
    【分析】对于AB,利用特殊函数法,举反例即可排除;对于CD,构造函数,利用导数与函数单调性的关系证得在上单调递减,从而得以判断.
    【详解】对于AB,不妨设,,则,,满足题意,
    若,则,故A错误,
    若,则,故B错误;
    对于CD,因为,在上的导函数存在,且,
    令,则,
    所以在上单调递减,
    因为,即,所以,
    由得,则,故C正确;
    由得,则,故D错误.
    故选:C.
    8. 已知a,b,c满足,,则( )
    A. , B. ,
    C. , D. ,
    【答案】B
    【解析】
    【分析】构造函数,利用其单调性,分,,讨论即可.
    【详解】由题意得,即,则,则,
    令,根据减函数加减函数为减函数的结论知:
    在上单调递减,
    当时,可得,,两边同取以5为底的对数得
    ,对通过移项得,
    两边同取以3为底的对数得,
    所以,所以 ,所以,且,
    故此时,,故C,D选项错误,
    时,,
    ,且,故A错误,
    下面严格证明当时,,,

    根据函数在上单调递增,且,
    则当时,有,
    ,,
    下面证明:,
    要证:,
    即证:,等价于证明,
    即证:,此式开头已证明,
    对,左边同除分子分母同除,右边分子分母同除得


    故当时,,则
    当时,可得,,两边同取以5为底的对数得
    ,对通过移项得,
    两边同取以3为底的对数得,
    所以,所以 ,所以,且,
    故,故此时,,
    下面严格证明当时,,
    当时,根据函数,且其在上单调递减,可知
    ,则,则,
    根据函数函数在上单调递增,且,
    则当时,,
    下面证明:,
    要证:
    即证:,等价于证,
    即证:,此式已证明,
    对,左边同除分子分母同除,右边分子分母同除得

    则,
    故时,,则
    当时,,则,,
    综上,,
    故选:B.
    【点睛】关键点睛:本题的关键在于构造函数,利用其单调性及,从而得到之间的大小关系,同时需要先求出的范围,然后再对进行分类讨论.
    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 已知是定义在上的偶函数,是定义在上的奇函数,且,在单调递减,则( )
    A B.
    C. D.
    【答案】BD
    【解析】
    【分析】由奇偶函数的单调性的关系确定两函数的单调性,再结合,逐项判断即可.
    【详解】因为是定义在R上的偶函数,是定义在R上的奇函数,且两函数在上单调递减,
    所以在上单调递增,在上单调递减,在上单调递减,
    所以,,
    所以,,,
    所以BD正确,C错误;
    若,则,A错误.
    故选:BD
    10. 已知平面平面,B,D是l上两点,直线且,直线且.下列结论中,错误的有( )
    A. 若,,且,则ABCD是平行四边形
    B. 若M是AB中点,N是CD中点,则
    C. 若,,,则CD在上射影是BD
    D. 直线AB,CD所成角的大小与二面角的大小相等
    【答案】ABD
    【解析】
    【分析】由空间中线线、线面及面面关系逐项判断即可得解.
    【详解】对于A,由题意,AB,CD为异面直线,所以四边形ABCD为空间四边形,不能为平行四边形,故A错误;
    对于B,取BC的中点H,连接HM,则HM是的中位线,所以,
    因为HM与MN相交,所以MN与AC不平行,B错误;
    对于C,若,所以由线面垂直的判定可得平面ABC,所以,
    由结合面面垂直的性质可得,所以点C在平面内的投影为点D,
    所以CD在平面内的投影为BD,故C正确;
    对于D,由二面角的定义可得当且仅当时,直线AB,CD所成的角或其补角才为二面角的大小,故D错误.
    故选:ABD.

    11. 质点P和Q在以坐标原点O为圆心,半径为1的上逆时针作匀速圆周运动,同时出发.P的角速度大小为,起点为与x轴正半轴的交点;Q的角速度大小为,起点为射线与的交点.则当Q与P重合时,Q的坐标可以为( )
    A. B.
    C. D.
    【答案】ABD
    【解析】
    【分析】确定点Q的初始位置,由题意列出重合时刻t的表达式,进而可得Q点的坐标,通过赋值对比选项即可得解.
    【详解】由题意,点Q的初始位置的坐标为,锐角,
    设t时刻两点重合,则,即,
    此时点,
    即,
    当时,,故A正确;
    当时,,即,故B正确;
    当时,,即,故D正确.
    由三角函数的周期性可得,其余各点均与上述三点重合.
    故选:ABD.
    12. 下图改编自李约瑟所著的《中国科学技术史》,用于说明元代数学家郭守敬在编制《授时历》时所做的天文计算.图中的,,,都是以O为圆心的圆弧,CMNK是为计算所做的矩形,其中M,N,K分别在线段OD,OB,OA上,,.记,,,,则( )

    A. B.
    C. D.
    【答案】ACD
    【解析】
    【分析】先利用线面垂直的判定定理与性质定理证得,,结合条件中,,从而在各直角三角形中得到的正余弦表示,对选项逐一分析判断即可.
    【详解】因为在矩形中,,
    又,,面,所以面,
    又面,所以,
    因为在矩形中,,所以,即,
    因为,,,面,
    所以面,
    又在矩形中,,所以面,
    又面,所以,
    同时,易知在矩形中,,
    对于A,在中,,
    在中,,
    中,,
    所以,故A正确;
    对于B,在中,,
    在中,,
    又,且在中,为的斜边,则,
    所以,故B错误;
    对于C,在中,,
    在中,,
    又,
    所以,故C正确;
    对于D,在中,,
    又,,,
    所以,
    所以,即,故D正确.
    故选:ACD.
    【点睛】关键点点睛:本题的突破口是利用线面垂直的判定定理与性质定理证得,,从而得到的正余弦表示,由此得解.
    三、填空题:本题共4小题,每小题5分,共20分.
    13. 某工厂生产的产品的质量指标服从正态分布.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到,则需调整生产工艺,使得至多为________.(若,则)
    【答案】##0.5
    【解析】
    【分析】根据题意以及正态曲线的特征可知,的解集,即可根据集合的包含关系列出不等式组,从而得解.
    【详解】依题可知,,再根据题意以及正态曲线的特征可知,的解集,
    由可得,,
    所以,解得:,故σ至多为.
    故答案为:.
    14. 若P,Q分别是抛物线与圆上的点,则的最小值为________.
    【答案】##
    【解析】
    【分析】设点,圆心,的最小值即为的最小值减去圆的半径,求出的最小值即可得解.
    【详解】依题可设,圆心,根据圆外一点到圆上一点的最值求法可知,
    的最小值即为的最小值减去半径.
    因为,,
    设,
    ,由于恒成立,
    所以函数在上递减,在上递增,即,
    所以,即的最小值为.
    故答案为:.
    15. 数学家祖冲之曾给出圆周率的两个近似值:“约率”与“密率”.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由,取3为弱率,4为强率,得,故为强率,与上一次的弱率3计算得,故为强率,继续计算,…….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推,已知,则________;________.
    【答案】 ①. 6 ②.
    【解析】
    【分析】根据题意不断计算即可解出.
    【详解】因为为强率,由可得,,即为强率;
    由可得,,即为强率;
    由可得,,即为强率;
    由可得,,即为强率,所以;
    由可得,,即为弱率;
    由可得,.
    故答案为:6;.
    16. 图为一个开关阵列,每个开关只有“开”和“关”两种状态,按其中一个开关1次,将导致自身和所有相邻的开关改变状态.例如,按将导致,,,,改变状态.如果要求只改变的状态,则需按开关的最少次数为________.










    【答案】5
    【解析】
    【分析】方法一:根据题意可知,如果要求只改变的状态,只有在以及周边按动开关才可以使按开关的次数最少,利用表格即可分析求出.
    【详解】方法一:根据题意可知,只有在以及周边按动开关才可以使按开关的次数最少.具体原因如下:
    假设开始按动前所有开关闭合,要只改变的状态,在按动(1,1)后,(1,2),(2,1)也改变,
    下一步可同时恢复或逐一恢复,同时恢复需按动(2,2),但会导致周边的(2,3),(3,2)也改变,
    因此会按动开关更多的次数,所以接下来逐一恢复,则至少按开关3次,
    这样沿着周边的开关再按动,可以实现最少的开关次数,即按动5次可以满足要求.
    如下表所示:(按顺时针方向开关,逆时针也可以)










    按动









    按动









    按动









    按动









    按动









    方法二:
    要满足题意,按动开关次数必须为奇数,且连续两次按一个方格等于无操作,
    按开关顺序无影响,由对称性按表格顺序可设各方格按动次数为
    a
    b
    c
    b
    d
    e
    c
    e
    f
    方格改变状态的次数为奇数,其它方格改变状态的次数为偶数,
    所以,
    对:a+2b为奇数;对或:a+b+c+d为偶数;
    对:b+c+e为偶数;对:2b+2e+d为偶数;
    对或:c+d+e+f为偶数;对:2e+f为偶数,
    根据以上情况,为使开关次数最少,,,,
    即1+b+c为偶数,b+c+e为偶数,c+e为偶数,所以可取,,即
    各方格开关次数如下:
    1
    0
    1
    0
    0
    1
    1
    1
    0
    具体开闭状态可参照方法一,故按开关的最少次数为5.
    故答案为:5.
    【点睛】本题主要考查学生运用所学知识解决知识迁移问题的综合能力,利用表格分析法简单清晰直观.
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17. 如图,四边形ABCD是圆柱底面的内接四边形,是圆柱的底面直径,是圆柱的母线,E是AC与BD的交点,,.

    (1)记圆柱的体积为,四棱锥的体积为,求;
    (2)设点F在线段AP上,,求二面角的余弦值.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)利用平面几何的知识推得,进而得到与,从而利用柱体与锥体的体积公式求得关于的表达式,由此得解;
    (2)根据题意建立空间直角坐标系,设,结合(1)中结论与(2)中所给条件得到所需向量的坐标表示,从而求得平面与平面的法向量与,由此利用空间向量夹角余弦的坐标表示即可得解.
    【小问1详解】
    因为与是底面圆弧所对的圆周角,
    所以,
    因为,所以在等腰中,,
    所以,
    因为是圆柱的底面直径,所以,则,
    所以,则,即,
    所以在等腰,,平分,则,
    所以,则,
    故在中,,,则,
    在中,,
    因为是圆柱的母线,所以面,
    所以,

    所以.
    【小问2详解】
    以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系,

    不妨设,则,,,
    则,
    所以,,,
    因为,所以,
    则,
    设平面的法向量,则,即,
    令,则,故,
    设平面的法向量,则,即,
    令,则,故,
    设二面角的平面角为,易知,
    所以,
    因此二面角的余弦值为.
    18. 已知函数在区间单调,其中为正整数,,且.
    (1)求图像的一条对称轴;
    (2)若,求.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)由函数在区间上的单调性确定最小正周期的范围,再由函数值相等即可确定对称轴;
    (2)根据对称轴及函数值确定的表达式,再结合最小正周期确定的可能取值,即可得解.
    【小问1详解】
    因为函数在区间单调,
    所以函数的最小正周期,
    又因为,
    所以直线即为图象的一条对称轴;
    【小问2详解】
    由(1)知,故,由,得或3.
    由为的一条对称轴,所以.
    因为,所以或,
    若,则,即,
    不存在整数,使得或3;
    若,则,即,
    不存在整数,使得或3.当时,.
    此时,由,得.
    19. 记数列的前n项和为,且.
    (1)求数列的通项公式;
    (2)设m为整数,且对任意,,求m的最小值.
    【答案】(1)
    (2)7
    【解析】
    【分析】(1)由数列与的关系可得,再结合等比数列的通项可得解;
    (2)利用错位相减法求出,结合范围即可得解.
    【小问1详解】
    因为,所以,
    当时,,故,
    且不满足上式,
    故数列的通项公式为
    【小问2详解】
    设,则,
    当时,,
    故,
    于是.
    整理可得,所以,
    又,所以符合题设条件的m的最小值为7.
    20. 一个池塘里的鱼的数目记为N,从池塘里捞出200尾鱼,并给鱼作上标识,然后把鱼放回池塘里,过一小段时间后再从池塘里捞出500尾鱼,表示捞出的500尾鱼中有标识的鱼的数目.
    (1)若,求的数学期望;
    (2)已知捞出的500尾鱼中15尾有标识,试给出N的估计值(以使得最大的N的值作为N的估计值).
    【答案】(1)20 (2)6666
    【解析】
    【分析】(1)首先求出标鱼占总体的比例,再分析其符合超几何分布,根据超几何分布期望的计算公式即可得到答案.
    (2)首先计算出当时,,当时,,
    记,计算,从而得到单调性,最后得到其最大值.
    【小问1详解】
    依题意X服从超几何分布,且,
    故.
    【小问2详解】
    当时,,
    当时,,
    记,则




    由,
    当且仅当,
    则可知当时,;
    当时,,
    故时,最大,所以N的估计值为6666.
    21. 已知双曲线过点,且焦距为10.
    (1)求C的方程;
    (2)已知点,E为线段AB上一点,且直线DE交C于G,H两点.证明:.
    【答案】(1)
    (2)证明见解析
    【解析】
    【分析】(1)根据题意列方程组求出,即可得出C的方程;
    (2)根据四点共线,要证即证,设出直线,,,联立直线方程与椭圆方程得出,将其代入,计算结果为零,即证出.
    【小问1详解】
    由题意可得,故,所以C的方程为.
    【小问2详解】
    设,,
    当时,即,解得,则,
    双曲线的渐近线方程为,
    故当直线与渐近线平行时,此时和双曲线仅有一个交点,
    此时直线方程为,
    令,则,故.
    则直线.
    由得,
    所以,.





    所以,所以
    即.

    【点睛】关键点睛:本题第二问不能直接计算长度,否则计算量过大,而是转化为证明向量数量积之间的关系,采取设,从而得到直线方程,再使用经典的联立法,得到韦达定理式,然后证明即可.
    22. 椭圆曲线加密算法运用于区块链.
    椭圆曲线.关于x轴的对称点记为.C在点处的切线是指曲线在点P处的切线.定义“”运算满足:①若,且直线PQ与C有第三个交点R,则;②若,且PQ为C的切线,切点为P,则;③若,规定,且.
    (1)当时,讨论函数零点的个数;
    (2)已知“”运算满足交换律、结合律,若,且PQ为C切线,切点为P,证明:;
    (3)已知,且直线PQ与C有第三个交点,求的坐标.
    参考公式:
    【答案】(1)见解析 (2)证明见解析
    (3)
    【解析】
    【分析】(1)利用导数讨论函数的单调性后求出极值,从而可判断零点的个数.
    (2)利用“”运算的性质计算后可得证明.
    (3)设直线的斜率,利用点在曲线上结合因式分解可求第三个点的坐标.
    【小问1详解】
    由题设可知,有,
    若,则,则,此时仅有一个零点;
    若,令,解得.
    当或时,,当时,,
    故在,上为单调递增;
    在上单调递减.
    因为,
    若,则,
    此时,而
    故此时有2个零点;
    若,则,
    此时,而
    故此时有2个零点;
    综上,
    当,所以有2个零点.当,所以有2个零点.
    当,有,则有1个零点.
    【小问2详解】
    因为为C在点P处的切线,且,所以,
    故,故,
    因为“”运算满足交换律、结合律,
    故,
    故.
    【小问3详解】
    直线的斜率,设与C的第三个交点为,

    则,代入得

    而,
    故,
    整理得到:,
    故即,
    同理可得,
    两式相减得:,
    故,
    所以,故,故,
    所以,
    因此的坐标为:

    【点睛】思路点睛:函数新运算问题,需根据运算的性质选择合理的计算顺序来处理等式,而三次函数的零点问题,注意结合极值的符号处理零点的个数.





    相关试卷

    2023年四省联考(安徽省、吉林省、黑龙江省、云南省)高考数学适应性试卷(2月份) (附答案):

    这是一份2023年四省联考(安徽省、吉林省、黑龙江省、云南省)高考数学适应性试卷(2月份) (附答案),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题含解析:

    这是一份2023届安徽省、云南省、吉林省、黑龙江省高三下学期2月适应性测试数学试题含解析,共23页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    教育部新课标四省联考2023届高三数学下学期2月高考适应性试卷(Word版附答案):

    这是一份教育部新课标四省联考2023届高三数学下学期2月高考适应性试卷(Word版附答案),共9页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023教育部新课标四省联考(安徽省、云南省、、黑龙江省)高三下学期2月高考适应性考试数学含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map