外接球、内切球、棱切球、截面问题、轨迹问题、线段和最短问题(解析版)
展开
这是一份外接球、内切球、棱切球、截面问题、轨迹问题、线段和最短问题(解析版),共19页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
外接球、内切球、棱切球、截面问题、轨迹问题、线段和最短问题 难度:★★★★☆ 建议用时: 30分钟 正确率 : /30一、单选题1.(2023·江苏连云港·统考模拟预测)已知圆锥内切球(与圆锥侧面、底面均相切的球)的半径为2,当该圆锥的表面积最小时,其外接球的表面积为( )A. B. C. D.【答案】A【解析】设圆锥的顶点为,底面圆的圆心为,内切球圆心为,则,,因为⊥,⊥,所以∽,则,设,,故,由得:,由得:,故,所以,,解得:,所以圆锥的表面积为,令,,当时,,当时,,故在上单调递减,在上单调递增,故在时取得最小值,,此时,,设圆锥的外接球球心为,连接,设,则,由勾股定理得:,即,解得:,故其外接球的表面积为.故选:A2.(2022·全国·统考高考真题)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )A. B. C. D.【答案】C【解析】[方法一]:【最优解】基本不等式设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又设四棱锥的高为,则,当且仅当即时等号成立.故选:C[方法二]:统一变量+基本不等式由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高, (当且仅当,即时,等号成立)所以该四棱锥的体积最大时,其高.故选:C.[方法三]:利用导数求最值由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,,令,,设,则,,,单调递增, ,,单调递减,所以当时,最大,此时.故选:C.【整体点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;方法二:消元,实现变量统一,再利用基本不等式求最值;方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.3.(2023秋·广东潮州·高三统考期末)点,分别是棱长为的正方体中棱,的中点,动点在正方形(包括边界)内运动,若面,则的长度的最小值是( )A. B. C.3 D.【答案】D【解析】取的中点,的中点F,连结,,,取EF中点O,连结,,∵点M,N分别是棱长为2的正方体中棱BC,的中点,,,,四边形为平行四边形,,而在平面中,易证,∵平面,平面,平面,平面,平面,平面,又,平面,∴平面平面,∵动点P在正方形(包括边界)内运动,且平面AMN,∴点P的轨迹是线段EF,,,∴,∴当P与O重合时,的长度取最小值,故选:D.4.(2022·全国·统考高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )A. B. C. D.【答案】C【解析】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是5.(2023·贵州贵阳·统考一模)如图,在三棱锥中, 平面平面,是边长为的等边三角形,,则该几何体外接球表面积为( )A. B. C. D.【答案】A【解析】设外心为,外心为,DB中点为E.因,平面,平面平面,平面平面,则平面,又平面,则.过,分别作平面,平面垂线,则垂线交点O为外接球球心,则四边形为矩形.外接圆半径.又因,,则.故外接圆半径.又. 又平面,平面,则.故外接球半径,故外接球表面积为.故选:A6.(2023·新疆乌鲁木齐·统考一模)如图,在三棱柱中,底面ABC,,,,D在上底面(包括边界)上运动,则三棱锥的外接球体积的最大值为( )A. B. C. D.【答案】C【解析】因为,,所以的外接圆的圆心为的中点,且,取的中点,连接,则,所以平面;设三棱锥的外接球的球心为,则在上,设,,球半径为,因为,所以,所以,因为,所以,因为,所以,即外接球半径的最大值为,所以三棱锥的外接球的体积的最大值为.故选:C.7.(2023·山东·烟台二中校考模拟预测)已知圆锥的侧面积为,高为,若圆锥可在某球内自由运动,则该球的体积最小值为( )A. B. C. D.【答案】D【解析】设圆锥的底面半径为r,母线长为l,则,解得,由题意知当球为圆锥的外接球时,体积最小,设外接球的半径为R,则,解得,所以外接球的体积为.故选:D.8.(2023·广东佛山·统考一模)已知球O的直径,,是球的球面上两点,,则三棱锥的体积为( )A. B. C. D.【答案】A【解析】因为为球的直径,,是球的球面上两点,所以,又,,所以,,所以为等边三角形且,设的外接圆的半径为,则,所以,则球心到平面的距离,所以点到平面的距离,又,所以.故选:A9.(2023·贵州贵阳·统考一模)棱锥的内切球半径,其中,分别为该棱锥的体积和表面积,如图为某三棱锥的三视图,若每个视图都是直角边长为的等腰直角形,则该三棱锥内切球半径为( )A. B. C. D.【答案】C【解析】由三视图可还原三棱锥如下图所示,其中平面,,,,棱锥表面积,该棱锥的内切球半径.故选:C.10.(2023·广东肇庆·统考二模)与正三棱锥6条棱都相切的球称为正三棱锥的棱切球.若正三棱锥的底面边长为,侧棱长为3,则此正三棱锥的棱切球半径为( )A. B. C. D.【答案】C【解析】如图三棱柱为正三棱锥,且底面边长,侧棱设正三棱锥的棱切球球心为,半径为,则顶点在底面的投影为也为的中心,取的中点,连接,过点作垂足为,则,设,在中,因为为的中心,则,,在中即;在中,,即,在中,,则;在中,,则,在中,,则,又因为,则,化简得,由得解得.故选:C.11.(2023春·北京·高三北京市八一中学校考开学考试)在棱长为1的正方体中,分别为,的中点,点在正方体的表面上运动,且满足平面,则下列说法正确的是( )A.点可以是棱的中点 B.线段的最大值为C.点的轨迹是正方形 D.点轨迹的长度为【答案】B【解析】如图,取棱的中点,连接,因为分别为,的中点,所以,在中,,由于平面,平面,所以平面,因为,所以,四边形为平行四边形,所以,因为平面,平面,所以,平面,因为,平面,所以,平面平面,由于为体对角线的中点,所以,连接并延长,直线必过点,故取中点,连接,所以,由正方体的性质易知,所以,四边形是平行四边形,,,因为,,,所以,共线,即平面,所以,四边形为点的轨迹,故A选项错误;由正方体的棱长为,所以,四边形的棱长均为,且对角线为,,所以,四边形为菱形,周长为,故CD选项错误,由菱形的性质知,线段的最大值为,故B选项正确.故选:B12.(2023春·浙江绍兴·高三统考开学考试)在正棱台中,为棱中点.当四棱台的体积最大时,平面截该四棱台的截面面积是( )A. B. C. D.【答案】C【解析】设,上底面和下底面的中心分别为,该四棱台的高,.在上下底面由勾股定理可知,.在梯形中,,所以该四棱台的体积为,所以,当且仅当,即时取等号,此时,.取的中点,连接、,显然有,平面,平面,所以平面,因此平面就是截面.显然,在直角梯形 中,,因此在等腰梯形中,,同理在等腰梯形中,,在等腰梯形中,设,则,,所以梯形的面积为,故选:C.二、填空题13.(2023·四川南充·四川省南充高级中学校考模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱, 圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球, 、为圆柱上、下底面的圆心,为球心,为底面圆的一条直径,若球的半径,有以下三个命题:①平面截得球的截面面积最小值为;②球的表面积是圆柱的表面积的;③若为球面和圆柱侧面的交线上一点,则的取值范围为.其中所有正确的命题序号为___________.【答案】①③【解析】对于①,过点在平面内作,垂足为点,如下图所示: 易知,,,由勾股定理可得,则由题可得,设到平面的距离为,平面截得球的截面圆的半径为,因为平面,当平面时,取最大值,即,所以,,所以平面截得球的截面面积最小值为,①对;对于②,因为球的半径为,可知圆柱的底面半径为,圆柱的高为,球的表面积为,圆柱的表面积为,所以球与圆柱的表面积之比为,②错;对于③,由题可知点在过球心与圆柱的底面平行的截面圆上,设在底面的射影为,则,,,由勾股定理可得,令,则,其中,所以,,所以,,因此,,③对.故答案为:①③.14.(2023·河南洛阳·洛宁县第一高级中学校联考一模)在长方体中,底面是边长为4的正方形,,过点作平面与分别交于M,N两点,且与平面所成的角为,给出下列说法:①异面直线与所成角的余弦值为;②平面;③点B到平面的距离为;④截面面积的最小值为6.其中正确的是__________(请填写所有正确说法的编号)【答案】②④【解析】依题意得,因为,所以异面直线与所成的角即或其补角,在中,,所以异面直线与所成角的余弦值为,故①错误.由于平面平面,所以平面,故②正确.设点B到平面的距离为h,由,得,解得,故③错误.如图,过点A作,连接,因为平面,所以,又,所以平面,平面,则,平面平面,平面平面,故为与平面所成的角,则,在中,,则有,在中,由射影定理得,由基本不等式得,当且仅当,即E为的中点时,等号成立,所以截面面积的最小值为,,故④正确.故答案为:②④.15.(2023·内蒙古·校联考模拟预测)在棱长为3的正方体中,点P在平面上运动,则的最小值为______.【答案】【解析】如下图所示设与平面交于点,易知,平面,由平面,所以,又,面,所以平面,面,所以,同理可证,由,面,所以平面.因为,所以,又因为,所以.倍长至,则,故点是点关于平面的对称点.那么有,.所以.如下图,以为原点,分别为轴、轴、轴建系,则,,,即.所以,即的最小值为.故答案为:.16.(2023·广西桂林·统考一模)已知棱长为8的正方体中,平面ABCD内一点E满足,点P为正方体表面一动点,且满足,则动点P运动的轨迹周长为___________.【答案】【解析】,则在的延长线上,且,由正方体性质知平面,当在平面上时,平面,,由得,因此点轨迹是以为圆心,2为半径的圆在正方形内的部分即圆周的,弧长为,从而知点在以为顶点的三个面内.当在棱上时,,,因此点在面时,点轨迹是以为圆心,为半径的圆在正方形内的圆弧,圆弧的圆心角为,弧长为,同理点在面内的轨迹长度也为,所以所求轨迹长度为.故答案为:.
相关试卷
这是一份一网打尽外接球、内切球与棱切球问题,文件包含一网打尽外接球内切球与棱切球问题解析版pdf、一网打尽外接球内切球与棱切球问题学生版pdf等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份经典三类球:外接球、内切球、棱切球--高考数学必考题型归类(学生及教师版),文件包含经典三类球外接球内切球棱切球--高一数学必考题型归类学生版pdf、经典三类球外接球内切球棱切球解析版pdf等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份高考数学二轮专题复习 外接球、内切球、棱切球问题(2份打包,教师版+原卷版),文件包含外接球内切球棱切球问题解析版pdf、外接球内切球棱切球问题学生版pdf等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。