|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023东莞东华高级中学高一下学期2月月考数学试题含答案
    立即下载
    加入资料篮
    2023东莞东华高级中学高一下学期2月月考数学试题含答案01
    2023东莞东华高级中学高一下学期2月月考数学试题含答案02
    2023东莞东华高级中学高一下学期2月月考数学试题含答案03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023东莞东华高级中学高一下学期2月月考数学试题含答案

    展开
    这是一份2023东莞东华高级中学高一下学期2月月考数学试题含答案,共10页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。

    东华高级中学  东华松山湖高级中学

    2022—2023学年第二学期高一2月考数学试卷

    一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 命题的否定是(   

    A.  B.

    C.  D.

    2. 的(  ).

    A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件       D. 既不充分也不必要条件

    3. 函数的零点所在的区间为(   

    A.               B.               C.             D.

    4.若,向量与向量的夹角为150°,则向量在向量上的投影向量为(    

    A    B        C          D

    5. ,则(   

    A.   B.

    C.   D.

    6. 要得到函数的图象,只需将函数的图象进行如下变换得到(   

    A. 向左平移个单位    B. 向右平移个单位    C. 向右平移个单位   D. 向左平移个单位

    7.已知是方程的两根,且,则的值为(    

    A     B        C          D

    8. 若定义上的函数满足:对任意的最大值和最小值分别为,则的值为(   

    A. 2022                 B. 2018  C. 4036              D. 4044

    二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.

    9.在中,中点,且,则(    

    A  B.    C    D

    10.已知函数,则(    

    A的最大值为                           B.直线图象的一条对称轴

    C在区间上单调递减               D的图象关于点对称

    11. ,则下列关系式中一定成立的是(   

    A.  B.

    C. 是第一象限角) D.

    12. 已知函数,若方程有四个不同的根,且,则下列结论正确的是(   

    A.  B.

    C.  D.

    三、填空题:本题共4小题,每小题5分,共20分.

    13.已知向量满足,则______

    14. 请写出一个函数,使它同时满足下列条件:(1的最小正周期是4;(2的最大值为2____________

    15. 是定义在R上的奇函数,当时,(为常数),则当时,_________.

    16. 木雕是我国古建筑雕刻中很重要一种艺术形式,传统木雕精致细腻、气韵生动、极富书卷气.如图是一扇环形木雕,可视为扇形OCD截去同心扇形OAB所得部分.已知,则该扇环形木雕的面积为________

    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

    17.(本题满分10分)

    已知集合

    (1)    求集合     (2)  ,求实数的取值范围.

     

    1. (本题满分12分)

    在平面直角坐标系中,是坐标原点,角的终边与单位圆的交点坐标为,射线绕点按逆时针方向旋转弧度后交单位圆于点,点的纵坐标关于的函数为.1求函数的解析式,并求的值;

    2,求的值.

     

    19.(本题满分12分)

    函数

    1)请用五点作图法画出函数上的图象(先列表,再画图)

    2)设,当试研究函数的零点的情况.

     

     

    20.(本题满分12分)

    2020年我国面对前所未知,突如其来,来势汹汹的新冠肺炎疫情,中央出台了一系列助力复工复产好政策.城市快递行业运输能力迅速得到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔t(单位:分钟)满足:,平均每趟快递车辆的载件个数(单位:个)与发车时间间隔t近似地满足,其中

    (1)若平均每趟快递车辆的载件个数不超过1600个,试求发车时间间隔t的值;

    (2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔t为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益(结果取整数)

     

     

     

     

     

    21 .(本题满分12分)

    已知函数是定义域上的奇函数,且满足

    1          判断函数在区间上的单调性并用定义证明

    2          已知证明

     

     

     

     

     

     

     

    22. (本题满分12分)

    若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称函数具有性质

    1判断函数是否具有性质,并说明理由;

    2若函数的定义域为且具有性质,求的值;

    3已知,函数的定义域为具有性质,若存在实数,使得对任意的,不等式都成立,求实数的取值范围.

     

     

     

     

    东华高级中学  东华松山湖高级中学

    2022—2023学年第二学期高一2月考数学答案

    一、选择题

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    D

    A

    C

    D

    B

    A

    B

    D

    BD

    ABC

    BC

    BCD

    二、填空题     13.     14. (答案不唯一)   15.     16.

    、解答题

    17.解:1·································································4

    2)由题意,若,则···························································5

    时,,解得································································ 6

    时,…………………… 8      解得…………………………………………………9

    综上,的取值范围为.····························································10

    18.解:1因为,且,所以···················································2分

    由此得········································································4

    .·············································································5

    2,即··································································7

    由于,得,与此同时,所以

    由平方关系解得:····························································9分

    ············································································ 12

    19、(1·····································································2

    按五个关键点列表:

    0

    0

    1

    0

    -1

    0

    0

    3

    0

    1

    0

    描点并将它们用光滑的曲线连接起来如图1

         ···········································································7        

    2因为

    所以的零点个数等价于图象交点的个数,············································8

    ,则······································································9

    ,即时,2个零点;

    ,即时,1个零点;

    ,即时,0个零点.      ······················································12

    20、解:(1)时,,不满足题意,舍去. ···········································1

    时,,即·································································3分

    解得(舍)或·······························································4分

    ,∴···································································5分

    所以发车时间间隔为5分钟.······················································6分

    2由题意可得····························································8分

    时,(元),·······························································9分

    当且仅当,即时,等号成立,····················································10分

    时,单调递减时,(元)····················································11分

    所以发车时间间隔为6分钟时,净收益最大为140(元).·······························12分

    21.解:(1)由为奇函数,可得·····················································1

    ,得······································································2

    所以.

    上单调递增,理由如下:························································3

    ,且,则······································································4

    因为,所以

    所以上单调递增 ···························································6

    2证法一:由题意,,则有·····················································8

    因为,所以,即······························································10

    所以,得证.··································································12           

    证法二:由(1)知,上单调递增,同理可证上单调递减.

    因为

    所以,所以···································································8

    要证,即证

    即证,即证···································································9

    代入解析式得,即证

    化简整理得,即证····························································10

    因为显然成立,······························································11

    所以原不等式得证,所以.························································ 12

    22、解:(1)对于函数的定义域内任意的

    ,则····································································1分

    结合的图象可知对内任意的是唯一存在的,········································2分

    所以函数具有性质.

    (2)因为,且,所以上是增函数,···············································3分

    又函数具有性质,所以,即·····················································4分

    因为,所以,又

    所以,解得,所以····························································5分

    (3)因为,所以,且在定义域上单调递增,

    又因为上单调递增,

    所以在上单调递增,····························································6分

    又因为具有性质

    从而,即,所以

    解得(舍去),·····························································7分

    因为存在实数,使得对任意的,不等式都成立,

    所以······································································8分

    因为在上单调递增,所以

    对任意的恒成立.····························································9分

    所以···································································11分

    解得       综上可得实数的取值范围是………………12


     

    相关试卷

    2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析): 这是一份2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024东莞东华高级中学高一上学期12月月考试题数学含答案: 这是一份2024东莞东华高级中学高一上学期12月月考试题数学含答案,共8页。试卷主要包含了单选题,多选题,填空题,解答题,附加题等内容,欢迎下载使用。

    广东省东莞市东华高级中学、东华松山湖高级中学2023-2024学年高一上学期10月月考数学试题: 这是一份广东省东莞市东华高级中学、东华松山湖高级中学2023-2024学年高一上学期10月月考数学试题,共9页。试卷主要包含了命题“”的否定为,不等式的解集为,定义在上的函数满足,已知集合,则实数的值可以是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023东莞东华高级中学高一下学期2月月考数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map