所属成套资源:备战中考数学第一轮专题复习真题分点透练(全国通用)
第十二讲 二次函数与几何综合-备战中考数学第一轮专题复习真题分点透练(全国通用)
展开这是一份第十二讲 二次函数与几何综合-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十二讲二次函数与几何综合解析版docx、第十二讲二次函数与几何综合原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
第十二讲 二次函数与几何综合
命题点1 二次函数中线段与面积问题
1.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.
(1)求抛物线的表达式;
(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;
(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.
【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,
∴,
解得,
∴y=x2﹣2x﹣3;
(2)连接CB交对称轴于点Q,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的对称轴为直线x=1,
∵A、B关于对称轴x=1对称,
∴AQ=BQ,
∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,
当C、B、Q三点共线时,△ACQ的周长最小,
∵C(0,﹣3),B(3,0),
设直线BC的解析式为y=kx+b,
∴,
解得,
∴y=x﹣3,
∴Q(1,﹣2);
(3)当∠BPM=90°时,PM=PB,
∴M点与A点重合,
∴M(﹣1,0);
当∠PBM=90°时,PB=BM,
如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH交于H,过点M作MG⊥HG交于G,
∵∠PBM=90°,
∴∠PBH+∠MBG=90°,
∵∠PBH+∠BPH=90°,
∴∠MBG=∠BPH,
∵BP=BM,
∴△BPH≌△MBG(AAS),
∴BH=MG,PH=BG=2,
设P(1,t),则M(3﹣t,﹣2),
∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,
解得t=2+或t=2﹣,
∴M(1﹣,﹣2)或(1+,﹣2),
∵M点在对称轴的左侧,
∴M点坐标为(1﹣,﹣2);
如图2,当P点在M点下方时,
同理可得M(3+t,2),
∴2=(3+t)2﹣2(3+t)﹣3,
解得t=﹣2+(舍)或t=﹣2﹣,
∴M(1﹣,2);
综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).
2.如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.
(1)求该抛物线的表达式;
(2)若PE∥x轴交AB于点E,求PD+PE的最大值;
(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.
【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,
,
解得,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,
,
解得,
∴直线AB的解析式为y=﹣x+3,
当y=0时,﹣x+3=0,
解得:x=2,
∴C点坐标为(2,0),
∵PD⊥x轴,PE∥x轴,
∴∠ACO=∠DEP,
∴Rt△DPE∽Rt△AOC,
∴,
∴PE=PD,
∴PD+PE=PD,
设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),
∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,
∴PD+PE=﹣(a﹣)2+,
∵﹣<0,
∴当a=时,PD+PE有最大值为;
(3)①当△AOC∽△DPA时,
∵PD⊥x轴,∠DPA=90°,
∴点P纵坐标是3,横坐标x>0,
即﹣x2+2x+3=3,解得x=2,
∴点D的坐标为(2,0);
∵PD⊥x轴,
∴点P的横坐标为2,
∴点P的纵坐标为:y=﹣22+2×2+3=3,
∴点P的坐标为(2,3),点D的坐标为(2,0);
②当△AOC∽△DAP时,
此时∠APG=∠ACO,
过点A作AG⊥PD于点G,
∴△APG∽△ACO,
∴,
设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),
则,
解得:m=,
∴D点坐标为(,1),P点坐标为(,),
综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).
3.如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x轴的另一个交点为A,与y轴相交于点C.
(1)求抛物线的解析式和点C的坐标;
(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)
(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)
【解答】解:(1)将B(3,0),D(﹣2,﹣)代入y=ax2+x+c,
∴,
解得,
∴y=﹣x2+x+,
令x=0,则y=,
∴C(0,);
(2)作直线BC,过M点作MN∥y轴交BC于点N,
设直线BC的解析式为y=kx+b,
∴,
解得,
∴y=﹣x+
设M(m,﹣m2+m+),则N(m,﹣m+),
∴MN=﹣m2+m,
∴S△MBC=•MN•OB=﹣(m﹣)2+,
当m=时,△MBC的面积有最大值,
此时M(,);
(3)令y=0,则﹣x2+x+=0,
解得x=3或x=﹣1,
∴A(﹣1,0),
设Q(0,t),P(m,﹣m2+m+),
①当AB为平行四边形的对角线时,m=3﹣1=2,
∴P(2,);
②当AQ为平行四边形的对角线时,3+m=﹣1,
解得m=﹣4,
∴P(﹣4,﹣);
③当AP为平行四边形的对角线时,m﹣1=3,
解得m=4,
∴P(4,﹣);
综上所述:P点坐标为(2,)或(﹣4,﹣)或(4,﹣).
4.如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.
(1)求此抛物线的解析式;
(2)当△OAB的面积为15时,求B的坐标;
(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.
【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,
∴抛物线与x轴的另一个交点坐标为(4,0),
设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,
解得:a=1,
∴y=x(x﹣4)=x2﹣4x,
故此抛物线的解析式为y=x2﹣4x;
(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,
∴设B(2,m)(m>0),
设直线OA的解析式为y=kx,
则5k=5,
解得:k=1,
∴直线OA的解析式为y=x,
设直线OA与抛物线对称轴交于点H,则H(2,2),
∴BH=m﹣2,
∵S△OAB=15,
∴×(m﹣2)×5=15,
解得:t=8,
∴点B的坐标为(2,8);
(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,
解得:,
∴直线AB的解析式为y=﹣x+10,
当PA﹣PB的值最大时,A、B、P在同一条直线上,
∵P是抛物线上的动点,
∴,
解得:,(舍去),
∴P(﹣2,12),
此时,PA﹣PB=AB==3.
命题点2 二次函数中的特殊角
5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
(1)求抛物线的表达式;
(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),
∴,
解得:.
∴抛物线的表达式为y=﹣+x+4;
(2)点D的坐标为(﹣8,8),理由:
将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,
过点D作DE⊥x轴于点E,
∵A(﹣2,0)、B(8,0),C(0,4),
∴OA=2,OB=8,OC=4.
∵,,
∴.
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠ACO=∠CBO.
∵∠CBO+∠OCB=90°,
∴∠ACO+∠OCB=90°,
∴∠ACB=90°,
∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,
∴点D,C,B三点在一条直线上.
由轴对称的性质得:BC=CD,AB=AD.
∵OC⊥AB,DE⊥AB,
∴DE∥OC,
∴OC为△BDE的中位线,
∴OE=OB=8,DE=2OC=8,
∴D(﹣8,8);
由题意得:S△ACD=S△ABC,
∴四边形OADC的面积=S△OAC+S△ADC
=S△OAC+S△ABC
=OC•OA+AB•OC
=4×2+10×4
=4+20
=24;
(3)①当点P在BC上方时,如图,
∵∠PCB=∠ABC,
∴PC∥AB,
∴点C,P的纵坐标相等,
∴点P的纵坐标为4,
令y=4,则﹣+x+4=4,
解得:x=0或x=6,
∴P(6,4);
②当点P在BC下方时,如图,
设PC交x轴于点H,
∵∠PCB=∠ABC,
∴HC=HB.
设HB=HC=m,
∴OH=OB﹣HB=8﹣m,
在Rt△COH中,
∵OC2+OH2=CH2,
∴42+(8﹣m)2=m2,
解得:m=5,
∴OH=3,
∴H(3,0).
设直线PC的解析式为y=kx+n,
∴,
解得:.
∴y=﹣x+4.
∴,
解得:,.
∴P(,﹣).
综上,点P的坐标为(6,4)或(,﹣).
6.如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的表达式;
(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,当的值最大时,求点D的坐标;
(3)P为抛物线上一点,连接CP,过点P作PQ⊥CP交抛物线对称轴于点Q,当tan∠PCQ=时,请直接写出点P的横坐标.
【解答】解:(1)把点A(3,0)和B(﹣1,0)代入得:,
解得:,
∴抛物线的解析式为y=﹣x2+2x+3;
(2)过点D作DH∥y轴,交AC于点H,如图所示:
设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+b,
由(1)可得:C(0,3),
∴,解得:,
∴直线AC的解析式为y=﹣x+3,
∴H(m,﹣m+3),
∴DH=﹣m2+3m,
∵DH∥y轴,
∴△OCN∽△DHN,
∴,
∵,
∴当时,的值最大,
∴;
(3)由题意可得如图所示:
过点P作y轴的平行线PH,分别过点C、Q作CG⊥PH于G,QH⊥PH于H,
∵PQ⊥CP,
∴∠CPQ=∠CGP=∠PHQ=90°,
∴∠CPG+∠PCG=∠CPG+∠QPH=90°,
∴∠PCG=∠QPH,
∴△PCG∽△QPH,
∴,
∵,
∴,
设点P(n,﹣n2+2n+3),
由题意可知:抛物线的对称轴为直线x=1,C(0,3),
∴QH=|n﹣1|,PG=|﹣n2+2n|,
∴,
当时,解得:,
当时,解得:
综上:点P的横坐标为或或或.
7.如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;
(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
【解答】解:(1)将点A(﹣,0),B(3,)代入到y=ax2+bx+2中得:
,解得:,
∴抛物线的解析式为y=﹣x2+x+2;
(2)设点P(m,﹣m2+m+2),
∵y=﹣x2+x+2,
∴C(0,2),
设直线BC的解析式为y=kx+c,
∴,解得,
∴直线BC的解析式为y=x+2,
∴D(m,m+2),
∴PD=|﹣m2+m+2﹣m﹣2|=|m2﹣3m|,
∵PD⊥x轴,OC⊥x轴,
∴PD∥CO,
∴当PD=CO时,以P、D、O、C为顶点的四边形是平行四边形,
∴|m2﹣3m|=2,解得m=1或2或或,
∴点P的横坐标为1或2或或;
(3)①当Q在BC下方时,如图,过B作BH⊥CQ于H,过H作MN⊥y轴,交y轴于M,过B作BN⊥MH于N,
∴∠BHC=∠CMH=∠HNB=90°,
∵∠QCB=45°,
∴△BHC是等腰直角三角形,
∴CH=HB,
∴∠CHM+∠BHN=∠HBN+∠BHN=90°,
∴∠CHM=∠HBN,
∴△CHM≌△HBN(AAS),
∴CM=HN,MH=BN,
∵H(m,n),
∵C(0,2),B(3,),
∴,解得,
∴H(,),
设直线CH的解析式为y=px+q,
∴,解得,
∴直线CH的解析式为y=﹣x+2,
联立直线CH与抛物线解析式得,
解得或,
∴Q(,);
②当Q在BC上方时,如图,过B作BH⊥CQ于H,过H作MN⊥y轴,交y轴于M,过B作BN⊥MH于N,
同理得Q(,).
综上,存在,点Q的坐标为(,)或(,).
命题点3 二次函数与三角形的存在性
7.已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF;
(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,
把A(﹣1,0)、B(0,3)、C(3,0)代入
得:,解得,
∴抛物线的表达式为:y=﹣x2+2x+3;
(2)证明:∵正方形OBDC,
∴∠OBC=∠DBC,BD=OB,
∵BF=BF,
∴△BOF≌△BDF,
∴∠BOF=∠BDF;
(3)解:∵抛物线交正方形OBDC的边BD于点E,
∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,
∴E(2,3),
①如图,
当M在线段BD的延长线上时,∠BDF为锐角,
∴∠FDM为钝角,
∵△MDF为等腰三角形,
∴DF=DM,
∴∠M=∠DFM,
∴∠BDF=∠M+∠DFM=2∠M,
∵BM∥OC,
∴∠M=∠MOC,
由(2)得∠BOF=∠BDF,
∴∠BDF+∠MOC=3∠M=90°,
∴∠M=30°,
在Rt△BOM中,
BM=,
∴ME=BM﹣BE=3﹣2;
②如图,
当M在线段BD上时,∠DMF为钝角,
∵△MDF为等腰三角形,
∴MF=DM,
∴∠BDF=∠MFD,
∴∠BMO=∠BDF+∠MFD=2∠BDF,
由(2)得∠BOF=∠BDF,
∴∠BMO=2∠BOM,
∴∠BOM+∠BMO=3∠BOM=90°,
∴∠BOM=30°,
在Rt△BOM中,
BM=,
∴ME=BE﹣BM=2﹣,
综上所述,ME的值为:3﹣2或2﹣.
8.如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).
(1)求此抛物线的函数解析式.
(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),
∴,
解得,
∴抛物线的解析式为y=x2+x﹣4;
(2)存在.
理由:如图1中,设D(t,t2+t﹣4),连接OD.
令y=0,则x2+x﹣4=0,
解得x=﹣4或2,
∴A(﹣4,0),C(2,0),
∵B(0,﹣4),
∴OA=OB=4,
∵S△ABD=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣(t+2)2+4,
∵﹣1<0,
∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);
(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);
∵OA=OB=4,∠AOB=90°,
∴∠OAB=∠OBA=45°,
当∠P1AB=90°时,△ANP1是等腰直角三角形,
∴AN=NP1=3,
∴P1(﹣1,3),
当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),
当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),
∴PJ=AB=2,
∴12+(n+2)2=(2)2,
解得n=﹣2或﹣﹣2,
∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),
综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).
9.如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
(1)直接写出A,B,C三点的坐标;
(2)求CP+PQ+QB的最小值;
(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.
【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,
∴A(﹣1,0),B(4,0),C(0,4);
(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:
∵CC'=PQ,CC'∥PQ,
∴四边形CC'QP是平行四边形,
∴CP=C'Q,
∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,
∵B,Q,C'共线,
∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,
∵C(0,4),CC'=PQ=1,
∴C'(0,3),
∵B(4,0),
∴BC'==5,
∴BC'+PQ=5+1=6,
∴CP+PQ+BQ最小值为6;
(3)如图:
由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,
设Q(,t),则P(,t+1),M(0,t+1),N(,0),
∵B(4,0),C(0,4);
∴BN=,QN=t,PM=,CM=|t﹣3|,
∵∠CMP=∠QNB=90°,
∴△CPM和△QBN相似,只需=或=,
①当=时,=,
解得t=或t=,
∴Q(,)或(,);
②当=时,=,
解得t=或t=(舍去),
∴Q(,),
综上所述,Q的坐标是(,)或(,)或(,).
命题点4 二次函数与四边形的存在性
10.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.
(1)求抛物线的解析式及点B的坐标.
(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.
(3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.
【解答】解:(1)由题意得,
,
∴,
∴y=x2+2x﹣3,
当y=0时,x2+2x﹣3=0,
∴x1=1,x2=﹣3,
∴B(﹣3,0);
(2)设直线BC的解析式为:y=kx+b,
∴,
∴,
∴y=﹣x﹣3,
设点P(m,﹣m﹣3),Q(m,m2+2m﹣3),
∴PQ=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,
∴当m=﹣时,PQ最大=;
(3)如图1,
∵B(﹣3,0),C(0,﹣3),
∴OB=OC=3,
∴∠OCB=∠OBC=45°,
作PD⊥y轴于D,
∴CD=PD=PC•sin∠OCB==t,
当BM=PM时,
∴∠MPB=∠OBC=45°,
∵∠PMO=∠PDO=∠MOD=90°,
∴四边形OMPD是矩形,
∴OM=PD=t,
由BM+OM=OB得,
∴2t=3,
∴t=,
∴P(﹣,﹣),
∴N(﹣3,﹣),
如图2,
当PM=PB时,作PD⊥y轴于D,作PE⊥x轴于E,
∴BM=2BE,
可得四边形PDOE是矩形,
∴OE=PD=t,
∴BE=3﹣t,
∴t=2(3﹣t),
∴t=2,
∴P(﹣2,﹣1),
∴N(﹣2,1),
如图3,
当PB=MB时,
3﹣=t,
∴t=6﹣3,
∴P(3,3﹣3),
∴N(0,3﹣3),
综上所述:N(﹣3,﹣)或(﹣2,1)或(0,3﹣3).
11.如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4).经过原点O的抛物线y=﹣x2+bx+c交直线AB于点A,C,抛物线的顶点为D.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)M是线段AB上一点,N是抛物线上一点,当MN∥y轴且MN=2时,求点M的坐标;
(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(4,0)和O(0,0),
∴,
解得:,
∴抛物线的解析式为:y=﹣x2+4x;
(2)∵直线AB经过点A(4,0)和B(0,4),
∴直线AB的解析式为:y=﹣x+4,
∵MN∥y轴,
设M(t,﹣t+4),N(t,﹣t2+4t),其中0≤t≤4,
当M在N点的上方时,
MN=﹣t+4﹣(﹣t2+4t)=t2﹣5t+4=2,
解得:t1=,t2=(舍),
∴M1(,),
当M在N点下方时,
MN=﹣t2+4t﹣(﹣t+4)=﹣t2+5t﹣4=2,
解得:t1=2,t2=3,
∴M2(2,2),M3(3,1),
综上,满足条件的点M的坐标有三个(,)或(2,2)或(3,1);
(3)存在,
①如图2,若AC是矩形的边,
设抛物线的对称轴与直线AB交于点R,且R(2,2),
过点C,A分别作直线AB的垂线交抛物线于点P1,P2,
∵C(1,3),D(2,4),
∴CD==,
同理得:CR=,RD=2,
∴CD2+CR2=DR2,
∴∠RCD=90°,
∴点P1与点D重合,
当CP1∥AQ1,CP1=AQ1时,四边形ACP1Q1是矩形,
∵C(1,3)向右平移1个单位,向上平移1个单位得到P1(2,4),
∴A(4,0)向右平移1个单位,向上平移1个单位得到Q1(5,1),
此时直线P1C的解析式为:y=x+2,
∵直线P2A与P1C平行且过点A(4,0),
∴直线P2A的解析式为:y=x﹣4,
∵点P2是直线y=x﹣4与抛物线y=﹣x2+4x的交点,
∴﹣x2+4x=x﹣4,
解得:x1=﹣1,x2=4(舍),
∴P2(﹣1,﹣5),
当AC∥P2Q2时,四边形ACQ2P2是矩形,
∵A(4,0)向左平移3个单位,向上平移3个单位得到C(1,3),
∴P2(﹣1,﹣5)向左平移3个单位,向上平移3个单位得到Q2(﹣4,﹣2);
②如图3,若AC是矩形的对角线,
设P3(m,﹣m2+4m)
当∠AP3C=90°时,过点P3作P3H⊥x轴于H,过点C作CK⊥P3H于K,
∴∠P3KC=∠AHP3=90°,∠P3CK=∠AP3H,
∴△P3CK∽△AP3H,
∴=,
∴=,
∵点P不与点A,C重合,
∴m≠1或m≠4,
∴m2﹣3m+1=0,
∴m=,
∴如图4,满足条件的点P有两个,即P3(,),P4(,),
当P3C∥AQ3,P3C=AQ3时,四边形AP3CQ3是矩形,
∵P3(,)向左平移个单位,向下平移个单位得到C(1,3),
∴A(4,0)向左平移个单位,向下平移个单位得到Q3(,),
当P4C∥AQ4,P4C=AQ4时,四边形AP4CQ4是矩形,
∵P4(,)向右平移个单位,向上平移个单位得到C(1,3),
∴A(4,0)向右平移个单位,向上平移个单位得到Q4(,);
综上,点Q的坐标为(5,1)或(﹣4,﹣2)或(,)或(,).
相关试卷
这是一份第十二讲 二次函数与几何综合(原卷版)(备战中考数学第一轮复习分点透练考试题(全国通用)),共10页。试卷主要包含了两点,交y轴于点C,,抛物线经过A,B,C三点,,与x轴另一交点为B,,顶点为C,,抛物线的顶点为D等内容,欢迎下载使用。
这是一份第十二讲 二次函数与几何综合-备战2023年中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十二讲二次函数与几何综合解析版docx、第十二讲二次函数与几何综合原卷版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。