所属成套资源:备战中考数学第一轮专题复习真题分点透练(全国通用)
第十四讲 三角形-备战中考数学第一轮专题复习真题分点透练(全国通用)
展开这是一份第十四讲 三角形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十四讲三角形解析版docx、第十四讲三角形原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
第十四讲 三角形
命题点1 三角形及边角关系
1.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是( )
A.3 B.4 C.5 D.6
2.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是( )
A.﹣5 B.4 C.7 D.8
3.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是( )
A.1km B.2km C.3km D.8km
4.(2021•淮安)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是 .
5.(2021•大庆)三个数3,1﹣a,1﹣2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为 .
命题点2 三角形的内角和及内外角关系
6.(2022•东营)如图,在⊙O中,弦AC∥半径OB,∠BOC=40°,则∠AOC的度数为 .
7.(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是 度.
8.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.
三角形内角和定理:三角形三个内角的和等于180°. 已知:如图,△ABC,求证:∠A+∠B+∠C=180°. | |
方法一 证明:如图,过点A作DE∥BC. | 方法二 证明:如图,过点C作CD∥AB. |
9.(2021•河池)如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的大小是( )
A.90° B.80° C.60° D.40°
10.(2021•辽宁)一副三角板如图所示摆放,若∠1=80°,则∠2的度数是( )
A.80° B.95° C.100° D.110°
11.(2021•河北)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应 (填“增加”或“减少”) 度.
命题点3 三角形的重要线段
类型一 与中点有关的问题
12.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是 .
类型二 与角平分线有关的问题
13.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD= .
14.(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= .
15.(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为( )
A.2 B.2 C.4 D.4+2
类型三 与高有关的问题
16.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是( )
A.0.5cm B.0.7cm C.1.5cm D.2cm
17.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )
A.线段CD是△ABC的AC边上的高线
B.线段CD是△ABC的AB边上的高线
C.线段AD是△ABC的BC边上的高线
D.线段AD是△ABC的AC边上的高线
命题点4 等腰三角形
18.(2022•淮安)如图,在△ABC中,AB=AC,∠BAC的平分线交BC于点D,E为AC的中点,若AB=10,则DE的长是( )
A.8 B.6 C.5 D.4
19.(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为( )
A.39° B.40° C.49° D.51°
20.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )
A.8cm B.13cm C.8cm或13cm D.11cm或13cm
21.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是( )
A.(5,4) B.(3,4) C.(5,3) D.(4,3)
22.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是( )
A.30° B.40° C.50° D.60°
23.(2022•广安)若(a﹣3)2+=0,则以a、b为边长的等腰三角形的周长为 .
24.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为 .
25.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为 .
26.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.
(1)求证:∠EBD=∠EDB.
(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.
命题点5 等边三角形
27.(2022•绵阳)下列关于等边三角形的描述不正确的是( )
A.是轴对称图形
B.对称轴的交点是其重心
C.是中心对称图形
D.绕重心顺时针旋转120°能与自身重合
28.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为( )
A.80° B.70° C.60° D.50°
29.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△BOC的面积之和为( )
A. B. C. D.
30.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为 .
命题点6 直角三角形
类型一 勾股定理及其应用
31.(2022•攀枝花)如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC.若OC=,BC=1,∠AOB=30°,则OA的值为( )
A. B. C. D.1
32.(2022•荆门)如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为( )
A.120m B.60m C.60m D.120m
33.(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为( )
A.2 B.2﹣3 C.2或 D.2或2﹣3
34.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A. B.3 C.2 D.
35.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )
A.BF=1 B.DC=3 C.AE=5 D.AC=9
36.(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,径隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是 (结果用含m的式子表示).
37.(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC 断裂(填“会”或“不会”,参考数据:≈1.732).
38.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是 .
39.(2022•泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为 .
40.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )
A. B.
C. D.
类型二 直角三角形的性质及计算
41.(2022•贺州)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为( )
A.34° B.44° C.124° D.134°
42.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=( )
A.30° B.45° C.60° D.75°
43.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为( )
A. B.2 C.2 D.4
44.(2022•荆州)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=AE=1,则CD= .
45.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.
(1)求证:CE=CM.
(2)若AB=4,求线段FC的长.
命题点7 等腰直角三角形
46.(2022•德州)将一副三角板(厚度不计)如图摆放,使含30°角的三角板的斜边与含45°角的三角板的一条直角边平行,则∠α的角度为( )
A.100° B.105° C.110° D.120°
47.(2022•安顺)如图,a∥b,将一个等腰直角三角板放置到如图所示位置.若∠1=15°,则∠2的大小是( )
A.20° B.25° C.30° D.45°
48.(2022•荆门)数学兴趣小组为测量学校A与河对岸的科技馆B之间的距离,在A的同岸选取点C,测得AC=30,∠A=45°,∠C=90°,如图,据此可求得A,B之间的距离为( )
A.20 B.60 C.30 D.30
49.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )
A.12 B.9 C.6 D.3
50.(2022•黔西南州)如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=60°,∠D=45°,AC与DE相交于点F.若BC∥AE,则∠AFE的度数为 .
51.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为 .
52.(2022•绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC=45°,AC与BD交于点E,若AB=2,CD=2,则△ABE的面积为 .
相关试卷
这是一份第十九讲 矩形、菱形、正方形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份第十四讲 三角形-备战2023年中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十四讲三角形解析版docx、第十四讲三角形原卷版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。