所属成套资源:备战中考数学第一轮专题复习真题分点透练(全国通用)
第十九讲 矩形、菱形、正方形-备战中考数学第一轮专题复习真题分点透练(全国通用)
展开
这是一份第十九讲 矩形、菱形、正方形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
1.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是( )
A.AB=ADB.AC⊥BDC.AB=ACD.AC=BD
2.(2022•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为 .
3.(2022•吉林)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF= .
4.(2021•邵阳)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=,AD=4,则AB的长为 .
5.(2022•山西)如图,在矩形ABCD中,AC是对角线.
(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).
(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.
6.(2022•湖州)如图,已知在Rt△ABC中,∠C=Rt∠,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作OF⊥BC,垂足为F.
(1)求证:OF=EC;
(2)若∠A=30°,BD=2,求AD的长.
命题点2 菱形的相关证明与计算
7.(2022•襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是( )
A.若OB=OD,则▱ABCD是菱形
B.若AC=BD,则▱ABCD是菱形
C.若OA=OD,则▱ABCD是菱形
D.若AC⊥BD,则▱ABCD是菱形
8.(2022•兰州)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC=60°,BD=4,则OE=( )
A.4B.2C.2D.
9.(2022•河池)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )
A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC
10.(2022•自贡)如图,菱形ABCD对角线交点与坐标原点O重合,点A(﹣2,5),则点C的坐标是( )
A.(5,﹣2)B.(2,﹣5)C.(2,5)D.(﹣2,﹣5)
11.(2022•乐山)已知菱形ABCD的两条对角线AC、BD的长分别是8cm和6cm.则菱形的面积为 cm2.
12.(2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.
13.(2022•西宁)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.
(1)求证:△ABE≌△ADF;
(2)若AE=4,CF=2,求菱形的边长.
14.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.
(1)求证:四边形AECD为菱形;
(2)若∠D=120°,DC=2,求△ABC的面积.
命题点3 正方形的相关证明与计算
15.(2022•雅安)如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.
(1)求证:△ABE≌△CDF;
(2)若AB=3,BE=2,求四边形AECF的面积.
16.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.
(1)求证:△ABE≌△FMN;
(2)若AB=8,AE=6,求ON的长.
17.(2022•遵义)将正方形ABCD和菱形EFGH按照如图所示摆放,顶点D与顶点H重合,菱形EFGH的对角线HF经过点B,点E,G分别在AB,BC上.
(1)求证:△ADE≌△CDG;
(2)若AE=BE=2,求BF的长.
相关试卷
这是一份第十九讲 矩形、菱形、正方形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份第十九讲 矩形、菱形、正方形-备战2023年中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。