所属成套资源:备战中考数学第一轮专题复习真题分点透练(全国通用)
第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用)
展开这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
A.24°B.26°C.48°D.66°
【答案】C
【解答】解:∵点A是的中点,
∴,
∴∠AOB=2∠ADC=2×24°=48°.
故选:C.
2.(2022•阜新)如图,A,B,C是⊙O上的三点,若∠C=35°,则∠ABO的度数是( )
A.35°B.55°C.60°D.70°
【答案】B
【解答】解:连接OA,
∵∠C=35°,
∴∠AOB=2∠C=70°,
∵OA=OB,
∴∠ABO=∠BAO=(180°﹣∠AOB)=55°.
故选:B.
3.(2022•巴中)如图,AB为⊙O的直径,弦CD交AB于点E,,∠CDB=30°,AC=2,则OE=( )
A.B.C.1D.2
【答案】C
【解答】解:如图,连接BC,
∵AB为⊙O的直径,,
∴AB⊥CD,
∵∠BAC=∠CDB=30°,,
∴AE=AC•cs∠BAC=3,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴,
∴OA=2,
∴OE=AE﹣OA=1.
故选:C.
4.(2022•兰州)如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=( )
A.70°B.60°C.50°D.40°
【答案】C
【解答】解:∵CD是⊙O的直径,
∴∠CAD=90°,
∴∠ACD+∠D=90°,
∵∠ACD=40°,
∴∠ADC=∠B=50°.
故选:C.
5.(2022•牡丹江)如图,BD是⊙O的直径,A,C在圆上,∠A=50°,∠DBC的度数是( )
A.50°B.45°C.40°D.35°
【答案】C
【解答】解:∵BD是⊙O的直径,
∴∠BCD=90°,
∵∠D=∠A=50°,
∴∠DBC=90°﹣∠D=40°.
故选:C.
6.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是( )
A.30°B.25°C.20°D.10°
【答案】C
【解答】解:连接BC,
∵∠AOC=80°,
∴∠ABC=40°,
∵∠P=30°,
∴∠BCD=10°,
∴的度数是20°.
故选:C.
7.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为( )
A.4B.8C.4D.4
【答案】A
【解答】解:连接AB,如图所示,
∵AC⊥BC,
∴∠ACB=90°.
∵∠ADC=30°,
∴∠ABC=∠ADC=30°.
∴在Rt△ABC中,
tan∠ABC=,
∴BC=.
∵AC=4,
∴BC==4.
故选:A.
8.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为( )
A.25°B.35°C.45°D.65°
【答案】A
【解答】解:∵AB是直径,
∴∠ACB=90°,
∵∠CAB=65°,
∴∠ABC=90°﹣∠CAB=25°,
∴∠ADC=∠ABC=25°,
故选:A
命题点2 垂径定理及其推论
类型一 垂径定理及其推论有关的计算
9.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为( )
A.B.C.D.
【答案】B
【解答】解:∵AB是⊙O的直径,AB⊥CD,
∴CE=DE=CD=12,
∵AB=26,
∴OC=13.
∴cs∠OCE=.
故选:B.
19.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=( )
A.B.4C.D.5
【答案】D
【解答】解:如图,过点O作OC⊥AB于点C,连接OB,
则OB=7,
∵PA=4,PB=6,
∴AB=PA+PB=10,
∵OC⊥AB,
∴AC=BC=5,
∴PC=PB﹣BC=1,
在Rt△OBC中,根据勾股定理得:
OC2=OB2﹣BC2=72﹣52=24,
在Rt△OPC中,根据勾股定理得:
OP===5,
故选:D.
11.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是( )
A.1B.C.2D.4
【答案】C
【解答】解:∵AB是⊙O的直径,
∴∠C=90°,
∵OD⊥AC,
∴点D是AC的中点,
∴OD是△ABC的中位线,
∴OD∥BC,且OD=BC,
设OD=x,则BC=2x,
∵DE=4,
∴OE=4﹣x,
∴AB=2OE=8﹣2x,
在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,
∴(8﹣2x)2=(4)2+(2x)2,
解得x=1.
∴BC=2x=2.
故选:C.
12.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为( )
A.36B.24C.18D.72
【答案】A
【解答】解:如图,连接OC,
∵AB=12,BE=3,
∴OB=OC=6,OE=3,
∵AB⊥CD,
在Rt△COE中,EC=,
∴CD=2CE=6,
∴四边形ACBD的面积=.
故选:A.
13.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为 .
【答案】cm
【解答】解:连接AC,
∵∠ABC=90°,且∠ABC是圆周角,
∴AC是圆形镜面的直径,
由勾股定理得:AC===13(cm),
所以圆形镜面的半径为cm,
故答案为:cm.
14.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为 .
【答案】7
【解答】解:∵OA=OC=7,且D为OC的中点,
∴OD=CD,
∵OC⊥AB,
∴∠ODA=∠CDB=90°,AD=BD,
在△AOD和△BCD中,
∴△AOD≌△BCD(SAS),
∴BC=OA=7.
故答案为:7.
15.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为 .
【答案】2
【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=1,
∵OC⊥AB,
∴D为AB的中点,
则AB=2AD=2=2=2.
故答案为:2.
16.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.
【解答】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.
求证:AM=BM,,.
证明:连接OA、OB,
∵OA=OB,
∴△OAB是等腰三角形,
∵AB⊥CD,
∴AM=BM,∠AOC=∠BOC,
∴,
类型二 垂径定理的实际应用
17.(2022•青海)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如果C是⊙O中弦AB的中点,CD经过圆心O交⊙O于点D,并且AB=4m,CD=6m,则⊙O的半径长为 m.
【答案】
【解答】解:连接OA,如图,设⊙O的半径为rm,
∵C是⊙O中弦AB的中点,CD过圆心,
∴CD⊥AB,AC=BC=AB=2m,
在Rt△AOC中,∵OA=rm,OC=(6﹣r)m,
∴22+(6﹣r)2=r2,
解得r=,
即⊙O的半径长为m.
故答案为:.
18.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为 厘米.
【答案】26
【解答】解:如图,点O是圆形玻璃镜面的圆心,连接OC,则点C,点D,点O三点共线,
由题意可得:OC⊥AB,AC=AB=10(厘米),
设镜面半径为x厘米,
由题意可得:x2=102+(x﹣2)2,
∴x=26,
∴镜面半径为26厘米,
故答案为:26.
19.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.
(1)直接判断AD与BD的数量关系;
(2)求这座石拱桥主桥拱的半径(精确到1m).
【解答】解:(1)∵OC⊥AB,
∴AD=BD;
(2)设主桥拱半径为R,由题意可知AB=26,CD=5,
∴BD=AB=13,
OD=OC﹣CD=R﹣5,
∵∠ODB=90°,
∴OD2+BD2=OB2,
∴(R﹣5)2+132=R2,
解得R=19.4≈19,
答:这座石拱桥主桥拱的半径约为19m.
命题点3 圆内接四边形
20.(2022•长春)如图,四边形ABCD是⊙O的内接四边形,若∠BCD=121°,则∠BOD的度数为( )
A.138°B.121°C.118°D.112°
【答案】C
【解答】解:∵四边形ABCD是⊙O的内接四边形,
∴∠A+∠BCD=180°,
∴∠A=180°﹣121°=59°,
∴∠BOD=2∠A=2×59°=118°,
故选:C.
21.(2022•淮安)如图,四边形ABCD是⊙O的内接四边形,若∠AOC=160°,则∠ABC的度数是( )
A.80°B.100°C.140°D.160°
【答案】B
【解答】解:∵∠AOC=160°,
∴∠ADC=∠AOC=80°,
∵四边形ABCD是⊙O的内接四边形,
∴∠ABC=180°﹣∠ADC=180°﹣80°=100°,
故选:B.
22.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
A.115°B.118°C.120°D.125°
【答案】C
【解答】解:四边形EFDA是⊙O内接四边形,
∴∠EFD+∠A=180°,
∵等边△ABC的顶点A在⊙O上,
∴∠A=60°,
∴∠EFD=120°,
故选:C.
23.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为 .
【答案】144°
【解答】解:∵∠DCE=72°,
∴∠BCD=180°﹣∠DCE=108°,
∵四边形ABCD内接于⊙O,
∴∠A=180°﹣∠BCD=72°,
由圆周角定理,得∠BOD=2∠A=144°,
故答案为:144°.
24.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.
(1)若AB=AC,求证:∠ADB=∠ADE;
(2)若BC=3,⊙O的半径为2,求sin∠BAC.
【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,
∴∠ADE=∠ABC,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ACB=∠ADB,
∴∠ADB=∠ADE;
(2)解:连接CO并延长交⊙O于点F,连接BF,
则∠FBC=90°,
在Rt△BCF中,CF=4,BC=3,
∴sinF==,
∵∠F=∠BAC,
∴sin∠BAC=.
25.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.
(1)求证:FB2=FE•FG;
(2)若AB=6,求FB和EG的长.
【解答】(1)证明:∵四边形ABCD是正方形,
∴AD=BC,
∴.
∴∠DBA=∠G.
∵∠EFB=∠BFG,
∴△EFB∽△BFG,
∴,
∴FB2=FE•FG;
(2)解:连接OE,如图,
∵AB=AD=6,∠A=90°,
∴BD==6.
∴OB=BD=3.
∵点E为AB的中点,
∴OE⊥AB,
∵四边形ABCD是正方形,
∴BC⊥AB,∠DBA=45°,AB=BC,
∴OE∥BC,OE=BE=AB.
∴.
∴,
∴,
∴BF=2;
∵点E为AB的中点,
∴AE=BE=3,
∴EC==3.
∵AE•BE=EG•EC,
∴EG=.
相关试卷
这是一份第三讲 分式及其运算-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第三讲分式及其运算解析版docx、第三讲分式及其运算原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份第二十讲 圆的基本性质-备战2023年中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。