终身会员
搜索
    上传资料 赚现金
    高中数学高考2 第2讲 等差数列及其前n项和 新题培优练
    立即下载
    加入资料篮
    高中数学高考2 第2讲 等差数列及其前n项和 新题培优练01
    高中数学高考2 第2讲 等差数列及其前n项和 新题培优练02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考2 第2讲 等差数列及其前n项和 新题培优练

    展开
    这是一份高中数学高考2 第2讲 等差数列及其前n项和 新题培优练,共5页。

    [基础题组练]

    1(2019·高考全国卷)Sn为等差数列{an}的前n项和已知S40a55(  )

    Aan2n5   Ban3n10

    CSn2n28n   DSnn22n

    解析:A.法一:设等差数列{an}的公差为d

    因为所以解得所以ana1(n1)d=-32(n1)2n5Snna1dn24n.故选A.

    法二:设等差数列{an}的公差为d

    因为所以解得

    选项Aa12×15=-3

    选项Ba13×110=-7排除B

    选项CS128=-6排除C

    选项DS12=-排除D.故选A.

    2(一题多解)(2019·沈阳质量监测)在等差数列{an}Sn为前n项和2a7a85S11的值是(  )

    A55 B11

    C50 D60

    解析:A.通解:设等差数列{an}的公差为d由题意可得2(a16d)a17d5a15d5S1111a1d11(a15d)11×555故选A.

    优解:设等差数列{an}的公差为d2a7a852(a6d)a62d5a65所以S1111a655故选A.

    3(一题多解)Sn为等差数列{an}的前n项和a4a524S648{an}的公差为(  )

    A1 B2

    C4 D8

    解析:C.法一:等差数列{an}S648a1a616a2a5a4a524所以a4a22d24168d4故选C.

    法二:由已知条件和等差数列的通项公式与前n项和公式可列方程组解得故选C.

    4(2019·广东广州联考)设等差数列{an}的前n项和为Snam4Sm0Sm214(m2mN*)a2 017的值为(  )

    A2 018 B4 028

    C5 037 D3 019

    解析:B.由题意得

    解得所以an=-4(n1)×22n6

    所以a2 0172×2 01764 028.故选B.

    5(2019·长春质量检测())等差数列{an}已知|a6||a11|且公差d>0则其前n项和取最小值时n的值为(  )

    A6 B7

    C8 D9

    解析:C.d>0可得等差数列{an}是递增数列|a6||a11|所以-a6a11即-a15da110d所以a1=-a8=-<0a9>0所以前8项和为前n项和的最小值故选C.

    6设等差数列{an}的前n项和为Sna62a3________ 

    解析:.

    答案:

    7在等差数列{an}公差d100项的和S10045a1a3a5a99________

    解析:因为S100(a1a100)45所以a1a100a1a99a1a100da1a3a5a99(a1a99)×10.

    答案:10

    8在单调递增的等差数列{an}a31a2a4a1________

    解析:由题知a2a42a32又因为a2a4数列{an}单调递增所以a2a4.所以公差d.所以a1a2d0.

    答案:0

    9(2019·武汉调研)已知等差数列{an}的前三项的和为-9前三项的积为-15.

    (1)求等差数列{an}的通项公式;

    (2){an}为递增数列求数列{|an|}的前n项和Sn.

    (1)设公差为d则依题意得a2=-3a1=-3da3=-3d

    所以(3d)(3)(3d)=-15d24d±2

    所以an=-2n1an2n7.

    (2)由题意得an2n7所以|an|

    n3Sn=-(a1a2an)n6nn2

    n4Sn=-a1a2a3a4an=-2(a1a2a3)(a1a2an)186nn2.

    综上数列{|an|}的前n项和Sn.

    10已知等差数列{an}的公差d>0.{an}的前n项和为Sna11S2·S336.

    (1)dSn

    (2)mk(mkN*)的值使得amam1am2amk65.

    解:(1)由题意知(2a1d)(3a13d)36

    a11代入上式解得d2d=-5.

    因为d>0所以d2.

    从而an2n1Snn2(nN*)

    (2)(1)amam1am2amk(2mk1)(k1)所以(2mk1)(k1)65.

    mkN*2mk1k1>1

    解得

    即所求m的值为5k的值为4.

    [综合题组练]

    1{an}是等差数列首项a1>0a2 016a2 017>0a2 016·a2 017<0则使前n项和Sn>0成立的最大正整数n(  )

    A2 016 B2 017

    C4 032 D4 033

    解析:C.因为a1>0a2 016a2 017>0a2 016·a2 017<0所以d<0a2 016>0a2 017<0所以S4 032>0S4 0334 033a2 017<0所以使前n项和Sn>0成立的最大正整数n4 032.

    2等差数列{an}是一个与n无关的常数则该常数的可能值的集合为(  )

    A{1}   B.

    C.   D.

    解析:B.a1d;若a10d01.因为a1d0所以0所以该常数的可能值的集合为.

    3设数列{an}的通项公式为an2n10(nN*)|a1||a2||a15|________

    解析:an2n10(nN*){an}是以-8为首项2为公差的等差数列又由an2n100n5所以n5an0n>5an>0所以|a1||a2||a15|=-(a1a2a3a4)(a5a6a15)20110130.

    答案:130

    4(2019·四川广元统考)若数列{an}是正项数列n2na1等于________

    解析:n12a14n2n 所以当n2(n1)2(n1)n2n 2nan4n2所以4n所以a12n22n.

    答案:2n22n

    5(创新型)等差数列{an}a3a44a5a76.

    (1){an}的通项公式;

    (2)bn[an]求数列{bn}的前10项和其中[x]表示不超过x的最大整数[0.9]0[2.6]2.

    解:(1)设数列{an}的公差为d由题意有

    2a15d4a15d3.

    解得a11d.

    所以{an}的通项公式为an.

    (2)(1)bn[]

    n12312bn1

    n452<3bn2

    n67834bn3

    n9104<5bn4.

    所以数列{bn}的前10项和为1×32×23×34×224.

    6(应用型)已知一次函数f(x)x82n.

    (1)设函数yf(x)的图象与y轴交点的纵坐标构成数列{an}求证:数列{an}是等差数列;

    (2)设函数yf(x)的图象与y轴的交点到x轴的距离构成数列{bn}求数列{bn}的前n项和Sn.

    解:(1)证明:由题意得an82n

    因为an1an82(n1)82n=-2a1826

    所以数列{an}是首项为6公差为-2的等差数列

    (2)由题意得bn|82n|.

    b16b24b32b40b52

    可知此数列前4项是首项为6公差为-2的等差数列从第5项起是首项为2公差为2的等差数列

    所以当n4Sn6n×(2)=-n27n

    n5SnS4(n4)×2×2n27n24.

    Sn

    相关试卷

    新高考数学一轮复习课时讲练 第6章 第2讲 等差数列及其前n项和 (含解析): 这是一份新高考数学一轮复习课时讲练 第6章 第2讲 等差数列及其前n项和 (含解析),共19页。试卷主要包含了等差数列的有关概念,等差数列的有关公式,等差数列的性质,等差数列的增减性与最值,等差数列与一次函数的关系等内容,欢迎下载使用。

    高中数学高考第2节 等差数列及其前n项和 课件练习题: 这是一份高中数学高考第2节 等差数列及其前n项和 课件练习题,共60页。PPT课件主要包含了an+1-an=d,第2项,a1+n-1d,等差中项,n-md,点击右图进入等内容,欢迎下载使用。

    高中数学高考第34讲 等差数列及其前n项和(讲)(学生版): 这是一份高中数学高考第34讲 等差数列及其前n项和(讲)(学生版),共7页。试卷主要包含了等差数列的有关概念,等差数列的有关公式等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map