高中数学高考2 第2讲 等差数列及其前n项和 新题培优练
展开[基础题组练]
1.(2019·高考全国卷Ⅰ)记Sn为等差数列{an}的前n项和,已知S4=0,a5=5,则( )
A.an=2n-5 B.an=3n-10
C.Sn=2n2-8n D.Sn=n2-2n
解析:选A.法一:设等差数列{an}的公差为d,
因为所以解得所以an=a1+(n-1)d=-3+2(n-1)=2n-5,Sn=na1+d=n2-4n.故选A.
法二:设等差数列{an}的公差为d,
因为所以解得
选项A,a1=2×1-5=-3;
选项B,a1=3×1-10=-7,排除B;
选项C,S1=2-8=-6,排除C;
选项D,S1=-2=-,排除D.故选A.
2.(一题多解)(2019·沈阳质量监测)在等差数列{an}中,若Sn为前n项和,2a7=a8+5,则S11的值是( )
A.55 B.11
C.50 D.60
解析:选A.通解:设等差数列{an}的公差为d,由题意可得2(a1+6d)=a1+7d+5,得a1+5d=5,则S11=11a1+d=11(a1+5d)=11×5=55,故选A.
优解:设等差数列{an}的公差为d,由2a7=a8+5,得2(a6+d)=a6+2d+5,得a6=5,所以S11=11a6=55,故选A.
3.(一题多解)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )
A.1 B.2
C.4 D.8
解析:选C.法一:等差数列{an}中,S6==48,则a1+a6=16=a2+a5,又a4+a5=24,所以a4-a2=2d=24-16=8,得d=4,故选C.
法二:由已知条件和等差数列的通项公式与前n项和公式可列方程组,得即解得故选C.
4.(2019·广东广州联考)设等差数列{an}的前n项和为Sn,若am=4,Sm=0,Sm+2=14(m≥2,且m∈N*),则a2 017的值为( )
A.2 018 B.4 028
C.5 037 D.3 019
解析:选B.由题意得
解得所以an=-4+(n-1)×2=2n-6,
所以a2 017=2×2 017-6=4 028.故选B.
5.(2019·长春质量检测(一))等差数列{an}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时n的值为( )
A.6 B.7
C.8 D.9
解析:选C.由d>0可得等差数列{an}是递增数列,又|a6|=|a11|,所以-a6=a11,即-a1-5d=a1+10d,所以a1=-,则a8=-<0,a9=>0,所以前8项和为前n项和的最小值,故选C.
6.设等差数列{an}的前n项和为Sn,若a6=2a3,则=________.
解析:===.
答案:
7.在等差数列{an}中,公差d=,前100项的和S100=45,则a1+a3+a5+…+a99=________.
解析:因为S100=(a1+a100)=45,所以a1+a100=,a1+a99=a1+a100-d=,则a1+a3+a5+…+a99=(a1+a99)=×=10.
答案:10
8.在单调递增的等差数列{an}中,若a3=1,a2a4=,则a1=________.
解析:由题知,a2+a4=2a3=2,又因为a2a4=,数列{an}单调递增,所以a2=,a4=.所以公差d==.所以a1=a2-d=0.
答案:0
9.(2019·武汉调研)已知等差数列{an}的前三项的和为-9,前三项的积为-15.
(1)求等差数列{an}的通项公式;
(2)若{an}为递增数列,求数列{|an|}的前n项和Sn.
解:(1)设公差为d,则依题意得a2=-3,则a1=-3-d,a3=-3+d,
所以(-3-d)(-3)(-3+d)=-15,得d2=4,d=±2,
所以an=-2n+1或an=2n-7.
(2)由题意得an=2n-7,所以|an|=,
①n≤3时,Sn=-(a1+a2+…+an)=n=6n-n2;
②n≥4时,Sn=-a1-a2-a3+a4+…+an=-2(a1+a2+a3)+(a1+a2+…+an)=18-6n+n2.
综上,数列{|an|}的前n项和Sn=.
10.已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
解:(1)由题意知(2a1+d)(3a1+3d)=36,
将a1=1代入上式解得d=2或d=-5.
因为d>0,所以d=2.
从而an=2n-1,Sn=n2(n∈N*).
(2)由(1)得am+am+1+am+2+…+am+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.
由m,k∈N*知2m+k-1≥k+1>1,
故解得
即所求m的值为5,k的值为4.
[综合题组练]
1.若{an}是等差数列,首项a1>0,a2 016+a2 017>0,a2 016·a2 017<0,则使前n项和Sn>0成立的最大正整数n是( )
A.2 016 B.2 017
C.4 032 D.4 033
解析:选C.因为a1>0,a2 016+a2 017>0,a2 016·a2 017<0,所以d<0,a2 016>0,a2 017<0,所以S4 032==>0,S4 033==4 033a2 017<0,所以使前n项和Sn>0成立的最大正整数n是4 032.
2.等差数列{an}中,是一个与n无关的常数,则该常数的可能值的集合为( )
A.{1} B.
C. D.
解析:选B.==,若a1=d,则=;若a1≠0,d=0,则=1.因为a1=d≠0,所以≠0,所以该常数的可能值的集合为.
3.设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________.
解析:由an=2n-10(n∈N*)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0得n≥5,所以n≤5时,an≤0,当n>5时,an>0,所以|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+110=130.
答案:130
4.(2019·四川广元统考)若数列{an}是正项数列,且++…+=n2+n,则a1++…+等于________.
解析:当n=1时,=2⇒a1=4,又++…+=n2+n ①,所以当n≥2时,++…+=(n-1)2+(n-1)=n2-n ②,①-②得=2n,即an=4n2,所以==4n,所以a1++…+==2n2+2n.
答案:2n2+2n
5.(创新型)等差数列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通项公式;
(2)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
解:(1)设数列{an}的公差为d,由题意有
2a1+5d=4,a1+5d=3.
解得a1=1,d=.
所以{an}的通项公式为an=.
(2)由(1)知,bn=[].
当n=1,2,3时,1≤<2,bn=1;
当n=4,5时,2<<3,bn=2;
当n=6,7,8时,3≤<4,bn=3;
当n=9,10时,4<<5,bn=4.
所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.
6.(应用型)已知一次函数f(x)=x+8-2n.
(1)设函数y=f(x)的图象与y轴交点的纵坐标构成数列{an},求证:数列{an}是等差数列;
(2)设函数y=f(x)的图象与y轴的交点到x轴的距离构成数列{bn},求数列{bn}的前n项和Sn.
解:(1)证明:由题意得an=8-2n,
因为an+1-an=8-2(n+1)-8+2n=-2,且a1=8-2=6,
所以数列{an}是首项为6,公差为-2的等差数列.
(2)由题意得bn=|8-2n|.
由b1=6,b2=4,b3=2,b4=0,b5=2,
可知此数列前4项是首项为6,公差为-2的等差数列,从第5项起,是首项为2,公差为2的等差数列.
所以当n≤4时,Sn=6n+×(-2)=-n2+7n,
当n≥5时,Sn=S4+(n-4)×2+×2=n2-7n+24.
故Sn=
新高考数学一轮复习课时讲练 第6章 第2讲 等差数列及其前n项和 (含解析): 这是一份新高考数学一轮复习课时讲练 第6章 第2讲 等差数列及其前n项和 (含解析),共19页。试卷主要包含了等差数列的有关概念,等差数列的有关公式,等差数列的性质,等差数列的增减性与最值,等差数列与一次函数的关系等内容,欢迎下载使用。
高中数学高考第2节 等差数列及其前n项和 课件练习题: 这是一份高中数学高考第2节 等差数列及其前n项和 课件练习题,共60页。PPT课件主要包含了an+1-an=d,第2项,a1+n-1d,等差中项,n-md,点击右图进入等内容,欢迎下载使用。
高中数学高考第34讲 等差数列及其前n项和(讲)(学生版): 这是一份高中数学高考第34讲 等差数列及其前n项和(讲)(学生版),共7页。试卷主要包含了等差数列的有关概念,等差数列的有关公式等内容,欢迎下载使用。