终身会员
搜索
    上传资料 赚现金

    高中数学高考8 第7讲 抛物线 新题培优练

    立即下载
    加入资料篮
    高中数学高考8 第7讲 抛物线 新题培优练第1页
    高中数学高考8 第7讲 抛物线 新题培优练第2页
    高中数学高考8 第7讲 抛物线 新题培优练第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考8 第7讲 抛物线 新题培优练

    展开

    这是一份高中数学高考8 第7讲 抛物线 新题培优练,共8页。试卷主要包含了过抛物线C,已知直线y=k与抛物线C,抛物线C,设抛物线C,已知点M和抛物线C等内容,欢迎下载使用。


     [基础题组练]
    1.(2019·高考全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=(  )
    A.2 B.3
    C.4 D.8
    解析:选D.由题意,知抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.
    2.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为4,则该抛物线方程是(  )
    A.y2=x B.y2=x
    C.y2=2x D.y2=x
    解析:选A.根据对称性,AB⊥x轴,由于正三角形的面积是4,故AB2=4,故AB=4,正三角形的高为2,故可设点A的坐标为(2,2),代入抛物线方程得4=4p,解得p=,故所求抛物线的方程为y2=x.故选A.
    3.(2019·甘肃张掖诊断)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=(  )
    A.9 B.8
    C.7 D.6
    解析:选B.抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.故选B.
    4.(2019·昆明调研)过抛物线C:y2=2px(p>0)的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段AB的中点N且垂直于l的直线与C的准线交于点M,若|MN|=|AB|,则l的斜率为(  )
    A. B.
    C. D.1
    解析:选B.设抛物线的准线为m,分别过点A,N,B作AA′⊥m,NN′⊥m,BB′⊥m,垂足分别为A′,N′,B′.
    因为直线l过抛物线的焦点,所以|BB′|=|BF|,|AA′|=|AF|.
    又N是线段AB的中点,|MN|=|AB|,所以|NN′|=(|BB′|+|AA′|)=(|BF|+|AF|)=|AB|=|MN|,所以∠MNN′=60°,则直线MN的倾斜角为120°.又MN⊥l,所以直线l的倾斜角为30°,斜率是.故选B.
    5.(2019·合肥模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点.若|FA|=2|FB|,则k=(  )
    A. B.
    C. D.
    解析:选D.设抛物线C:y2=8x的准线为l,易知l:x=-2,
    直线y=k(x+2)恒过定点P(-2,0),
    如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,

    由|FA|=2|FB|,知|AM|=2|BN|,
    所以点B为线段AP的中点,连接OB,
    则|OB|=|AF|,
    所以|OB|=|BF|,所以点B的横坐标为1,
    因为k>0,
    所以点B的坐标为(1,2),
    所以k==.故选D.
    6.抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为________.
    解析:设满足题意的圆的圆心为M.
    根据题意可知圆心M在抛物线上,
    又因为圆的面积为36π,
    所以圆的半径为6,则|MF|=xM+=6,即xM=6-,
    又由题意可知xM=,所以=6-,解得p=8.
    所以抛物线方程为y2=16x.
    答案:y2=16x
    7.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=________.
    解析:设M(x1,y1),N(x2,y2).由已知可得直线的方程为y=(x+2),即x=y-2,由得y2-6y+8=0.
    由根与系数的关系可得y1+y2=6,y1y2=8,
    所以x1+x2=(y1+y2)-4=5,x1x2==4,因为F(1,0),所以·=(x1-1)·(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2=4-5+1+8=8.
    答案:8
    8.(一题多解)(2018·高考全国卷Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.
    解析:法一:由题意知抛物线的焦点为(1,0),则过C的焦点且斜率为k的直线方程为y=k(x-1)(k≠0),由消去y得k2(x-1)2=4x,即k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=1.由消去x得y2=4,即y2-y-4=0,则y1+y2=,y1y2=-4,由∠AMB=90°,得·=(x1+1,y1-1)·(x2+1,y2-1)=x1x2+x1+x2+1+y1y2-(y1+y2)+1=0,将x1+x2=,x1x2=1与y1+y2=,y1y2=-4代入,得k=2.
    法二:设抛物线的焦点为F,A(x1,y1),B(x2,y2),则所以y-y=4(x1-x2),则k==,取AB的中点M′(x0,y0),分别过点A,B作准线x=-1的垂线,垂足分别为A′,B′,又∠AMB=90°,点M在准线x=-1上,所以|MM′|=|AB|=(|AF|+|BF|)=(|AA′|+|BB′|).又M′为AB的中点,所以MM′平行于x轴,且y0=1,所以y1+y2=2,所以k=2.
    答案:2
    9.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
    (1)求抛物线的方程;
    (2)若过M作MN⊥FA,垂足为N,求点N的坐标.
    解:(1)抛物线y2=2px的准线为x=-,
    于是4+=5,
    所以p=2.
    所以抛物线方程为y2=4x.
    (2)因为点A的坐标是(4,4),
    由题意得B(0,4),M(0,2).
    又因为F(1,0),所以kFA=,
    因为MN⊥FA,所以kMN=-.
    又FA的方程为y=(x-1),①
    MN的方程为y-2=-x,②
    联立①②,解得x=,y=,
    所以点N的坐标为.
    10.已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1 (1)求该抛物线的方程;
    (2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.
    解:(1)由题意得直线AB的方程为y=2·,与y2=2px联立,
    消去y有4x2-5px+p2=0,
    所以x1+x2=.
    由抛物线定义得|AB|=x1+x2+p=+p=9,
    所以p=4,从而该抛物线的方程为y2=8x.
    (2)由(1)得4x2-5px+p2=0,
    即x2-5x+4=0,
    则x1=1,x2=4,
    于是y1=-2,y2=4,
    从而A(1,-2),B(4,4),设C(x3,y3),
    则=(x3,y3)=(1,-2)+λ(4,4)
    =(4λ+1,4λ-2).
    又y=8x3,所以[2(2λ-1)]2=8(4λ+1),
    整理得(2λ-1)2=4λ+1,
    解得λ=0或λ=2.
    [综合题组练]
    1.(2019·重庆六校联考)已知双曲线C1:-=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程是(  )
    A.x2=16y B.x2=8y
    C.x2=y D.x2=y
    解析:选A.因为双曲线C1:-=1(a>0,b>0)的离心率为2,所以=2,即=4,所以=3.因为双曲线的渐近线方程为bx±ay=0,抛物线C2:x2=2py(p>0)的焦点到双曲线的渐近线的距离为2,所以=2,解得p=8,所以抛物线C2的方程是x2=16y.
    2.(2019·湖南郴州模拟)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程是(  )

    A.y2=9x B.y2=6x
    C.y2=3x D.y2=x
    解析:选C.设A,B在准线l上的射影分别为A1,B1,如图,由于|BC|=2|BF|=2|BB1|,则直线AB的斜率为,
    故|AC|=2|AA1|=2|AF|=6,
    从而|BF|=1,|AB|=4,
    故==,即p=,
    从而抛物线的方程为y2=3x,故选C.
    3.(2019·广东六校第一次联考)抛物线y=2x2上有一动弦AB,中点为M,且弦AB的长为3,则点M的纵坐标的最小值为(  )
    A.     B. C.     D.1
    解析:选A.由题意设A(x1,y1),B(x2,y2),M(x0,y0),直线AB的方程为y=kx+b.由题意知y0≥b>0,联立得,整理得2x2-kx-b=0,Δ=k2+8b>0,x1+x2=,x1x2=-,则|AB|=,点M的纵坐标y0==x+x=+b.因为弦AB的长为3,所以=3,即(1+k2)(+2b)=9,故(1+4y0-4b)(y0+b)=9,即(1+4y0-4b)(4y0+4b)=36.由基本不等式得,(1+4y0-4b)+(4y0+4b)≥2=12,当且仅当时取等号,即1+8y0≥12,y0≥,点M的纵坐标的最小值为,故选A.
    4.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则实数a的取值范围为________.
    解析:如图,设C(x0,x)(x≠a),A(-,a),B(,a),
    则=(--x0,a-x),=(-x0,a-x).
    因为CA⊥CB,所以·=0,
    即-(a-x)+(a-x)2=0,(a-x)(-1+a-x)=0,
    所以x=a-1≥0,所以a≥1.
    答案:[1,+∞)
    5.(应用型)(2019·湖南六校联考)已知抛物线的方程为x2=2py(p>0),其焦点为F,点O为坐标原点,过焦点F作斜率为k(k≠0)的直线与抛物线交于A,B两点,过A,B两点分别作抛物线的两条切线,设两条切线交于点M.
    (1)求·;
    (2)设直线MF与抛物线交于C,D两点,且四边形ACBD的面积为p2,求直线AB的斜率k.
    解:(1)设直线AB的方程为y=kx+,A(x1,y1),B(x2,y2),由得x2-2pkx-p2=0,
    则所以y1·y2=,
    所以·=x1·x2+y1·y2=-p2.
    (2)由x2=2py,知y′=,
    所以抛物线在A,B两点处的切线的斜率分别为,,所以直线AM的方程为y-y1=(x-x1),直线BM的方程为y-y2=(x-x2),则可得M.
    所以kMF=-,所以直线MF与AB相互垂直.
    由弦长公式知,|AB|=|x1-x2|=·=2p(k2+1),
    用-代替k得,|CD|=2p,
    四边形ACBD的面积S=·|AB|·|CD|=2p2=p2,
    解得k2=3或k2=,
    即k=±或k=±.
    6.(创新型)(2019·武汉调研)已知抛物线C:x2=2py(p>0)和定点M(0,1)设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线的交点为N.
    (1)若N在以AB为直径的圆上,求p的值;
    (2)若△ABN的面积的最小值为4,求抛物线C的方程.
    解:设直线AB:y=kx+1,A(x1,y1),B(x2,y2),
    将直线AB的方程代入抛物线C的方程得x2-2pkx-2p=0,
    则x1+x2=2pk,x1x2=-2p.①
    (1)由x2=2py得y′=,则A,B处的切线斜率的乘积为=-,
    因为点N在以AB为直径的圆上,所以AN⊥BN,
    所以-=-1,所以p=2.
    (2)易得直线AN:y-y1=(x-x1),直线BN:y-y2=(x-x2),
    联立,得
    结合①式,解得即N(pk,-1).
    |AB|=|x2-x1|==,
    点N到直线AB的距离d==,
    则△ABN的面积S△ABN=·|AB|·d=≥2,当k=0时,取等号,
    因为△ABN的面积的最小值为4,
    所以2=4,所以p=2,故抛物线C的方程为x2=4y.


    相关试卷

    高中数学高考9 第8讲 曲线与方程 新题培优练:

    这是一份高中数学高考9 第8讲 曲线与方程 新题培优练,共8页。试卷主要包含了方程2+2=0表示的曲线是,如图所示,已知圆A等内容,欢迎下载使用。

    高中数学高考8 第8讲 函数与方程 新题培优练:

    这是一份高中数学高考8 第8讲 函数与方程 新题培优练,共7页。

    高中数学高考7 第7讲 立体几何中的向量方法 新题培优练:

    这是一份高中数学高考7 第7讲 立体几何中的向量方法 新题培优练,共11页。试卷主要包含了))等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map