![高中数学高考47第八章 立体几何与空间向量 8 3 空间点、直线、平面之间的位置关系第1页](http://www.enxinlong.com/img-preview/3/3/14022938/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考47第八章 立体几何与空间向量 8 3 空间点、直线、平面之间的位置关系第2页](http://www.enxinlong.com/img-preview/3/3/14022938/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考47第八章 立体几何与空间向量 8 3 空间点、直线、平面之间的位置关系第3页](http://www.enxinlong.com/img-preview/3/3/14022938/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学高考47第八章 立体几何与空间向量 8 3 空间点、直线、平面之间的位置关系
展开
这是一份高中数学高考47第八章 立体几何与空间向量 8 3 空间点、直线、平面之间的位置关系,共12页。试卷主要包含了四个公理,直线与直线的位置关系,等角定理等内容,欢迎下载使用。
§8.3 空间点、直线、平面之间的位置关系最新考纲考情考向分析1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.主要考查与点、线、面位置关系有关的命题真假判断和求解异面直线所成的角,题型主要以选择题和填空题的形式出现,解题要求有较强的直观想象和逻辑推理等核心素养,主要为中低档题. 1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过 的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们 过该点的公共直线.公理4:平行于同一条直线的两条直线互相 .2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的 叫做异面直线a与b所成的角(或夹角).②范围:.3.直线与平面的位置关系有 、 、 三种情况.4.平面与平面的位置关系有 、 两种情况.5.等角定理空间中如果两个角的 ,那么这两个角相等或互补. 概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗? 2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗? 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( )(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )(3)如果两个平面有三个公共点,则这两个平面重合.( )(4)经过两条相交直线,有且只有一个平面.( )(5)没有公共点的两条直线是异面直线.( )(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.( )题组二 教材改编2.[P52B组T1(2)]如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )A.30° B.45°C.60° D.90°(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.题组三 易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直 B.相交C.异面 D.平行5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点AB.点BC.点C但不过点MD.点C和点M6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.题型一 平面基本性质的应用例1 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点. 跟踪训练1 如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线. 题型二 判断空间两直线的位置关系例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交 (2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是( )A.相交但不垂直B.相交且垂直C.异面D.平行跟踪训练2 (1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)题型三 求两条异面直线所成的角例3 (2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD—A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为( )A. B.C. D.引申探究 将上例条件“AA1=2AB=2”改为“AB=1,若异面直线A1B与AD1所成角的余弦值为”,试求的值. 跟踪训练3 (2018·全国Ⅱ)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为( )A. B. C. D.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例 如图所示,四边形ABEF和ABCD都是梯形,BC∥AD且BC=AD,BE∥FA且BE=FA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么? 1.四条线段顺次首尾相连,它们最多可确定的平面个数为( )A.4 B.3C.2 D.12.a,b,c是两两不同的三条直线,下面四个命题中,真命题是( )A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是( )A.直线ACB.直线ABC.直线CDD.直线BC4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面5.(2017·全国Ⅱ)已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A. B. C. D.6.正方体AC1中,与面ABCD的对角线AC异面的棱有________条.7.(2019·东北三省三校模拟)若直线l⊥平面β,平面α⊥平面β,则直线l与平面α的位置关系为________.8.在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是________.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角. 12.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成角的余弦值. 13.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A. B. C. D.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上四个命题中,正确命题的序号是________.15.如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=4,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为________.16.如图所示,三棱柱ABC-A1B1C1的底面是边长为2的正三角形,侧棱A1A⊥底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2.(1)当点M在何位置时,BM∥平面AEF?(2)若BM∥平面AEF,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值.
相关试卷
这是一份备战2024年高考数学大一轮复习(人教A版-理)第八章 立体几何与空间向量 第3节 空间点、直线、平面之间的位置关系,共23页。试卷主要包含了平行公理和等角定理,异面直线所成的角等内容,欢迎下载使用。
这是一份高中数学高考第7章 §7 3 空间点、直线、平面之间的位置关系,共24页。试卷主要包含了“三个”推论,空间中直线与直线的位置关系,空间中直线与平面的位置关系,空间中平面与平面的位置关系,等角定理,异面直线所成的角等内容,欢迎下载使用。
这是一份高中数学高考第3讲 空间点、直线、平面之间的位置关系,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)