高中数学高考59第九章 平面解析几何 9 5 椭圆 第2课时 直线与椭圆
展开
这是一份高中数学高考59第九章 平面解析几何 9 5 椭圆 第2课时 直线与椭圆,共7页。试卷主要包含了已知直线l,椭圆Γ,已知椭圆C等内容,欢迎下载使用。
第2课时 直线与椭圆题型一 直线与椭圆的位置关系1.若直线y=kx+1与椭圆+=1总有公共点,则m的取值范围是( )A.m>1 B.m>0C.0<m<5且m≠1 D.m≥1且m≠52.已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点. 题型二 弦长及中点弦问题 命题点1 弦长问题例1 斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )A.2 B. C. D.命题点2 中点弦问题例2 已知P(1,1)为椭圆+=1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为________________.跟踪训练1 已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程. 题型三 椭圆与向量等知识的综合例3 已知椭圆C:+=1(a>b>0),e=,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且=λ(其中λ>1).(1)求椭圆C的标准方程;(2)求实数λ的值. 跟踪训练2 已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),短轴的两个端点分别为B1,B2.(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且⊥,求直线l的方程. 1.若直线mx+ny=4与⊙O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数是( )A.至多为1 B.2C.1 D.02.已知椭圆+=1(a>b>0)的一条弦所在的直线方程是x-y+5=0,弦的中点坐标是M(-4,1),则椭圆的离心率是( )A. B. C. D.3.已知椭圆+=1以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为( )A. B.- C.2 D.-24.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线与椭圆C交于A,B两点,且|AB|=3,则C的方程为( )A.+y2=1 B.+=1C.+=1 D.+=15.(2018·吉林四平质检)经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点.设O为坐标原点,则·等于( )A.-3 B.-C.-或-3 D.±6.设F1,F2分别是椭圆+y2=1的左、右焦点,若椭圆上存在一点P,使(+)·=0(O为坐标原点),则△F1PF2的面积是( )A.4 B.3 C.2 D.17.直线y=kx+k+1与椭圆+=1的位置关系是________.8.椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于____________.9.已知椭圆C:+=1(a>b>0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|AF|=6,cos∠ABF=,则椭圆C的离心率e=________.10.已知直线MN过椭圆+y2=1的左焦点F,与椭圆交于M,N两点.直线PQ过原点O与MN平行,且PQ与椭圆交于P,Q两点,则=________.11.(2018·贵州适应性考试)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,E的离心率为,点(0,1)是E上一点.(1)求椭圆E的方程;(2)过点F1的直线交椭圆E于A,B两点,且=2,求直线BF2的方程. 12.设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若· 13.正方形ABCD的四个顶点都在椭圆+=1上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )A. B.C. D.14.已知椭圆+=1(a>b>0)短轴的端点为P(0,b),Q(0,-b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA,PB的斜率之积等于-,则点P到直线QM的距离为______.15.平行四边形ABCD内接于椭圆+=1,直线AB的斜率k1=2,则直线AD的斜率k2等于( )A. B.- C.- D.-216.过椭圆+=1(a>b>0)上的动点M作圆x2+y2=的两条切线,切点分别为P和Q,直线PQ与x轴和y轴的交点分别为E和F,求△EOF面积的最小值.
相关试卷
这是一份备战2024年高考数学大一轮复习(人教A版-理)第九章 平面解析几何 第5节 椭圆 第二课时 直线与椭圆,共17页。试卷主要包含了已知直线l,记半焦距为c,,已知椭圆C等内容,欢迎下载使用。
这是一份高中数学高考59第九章 平面解析几何 9 5 椭圆 第2课时 直线与椭圆,共13页。试卷主要包含了已知直线l,椭圆Γ,已知椭圆C等内容,欢迎下载使用。
这是一份高中数学高考58第九章 平面解析几何 9 5 椭圆 第1课时 椭圆及其性质,共19页。试卷主要包含了椭圆的概念,椭圆的标准方程和几何性质,已知椭圆C,设F1,F2为椭圆C,已知椭圆C1等内容,欢迎下载使用。