高中数学高考2018高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数Ⅰ 课时达标检测(十) 对数与对数函数 Word版含答案
展开
这是一份高中数学高考2018高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数Ⅰ 课时达标检测(十) 对数与对数函数 Word版含答案,共5页。
课时达标检测(十) 对数与对数函数 1.已知0<a<1,x=loga+loga,y=loga5,z=loga-loga,则( )A.x>y>z B.z>y>xC.y>x>z D.z>x>y解析:选C 依题意,得x=loga,y=loga,z=loga.又0<a<1,<<,因此有loga>loga>loga,即y>x>z.2.(2017·天津模拟)已知a=log25,b=log5(log25),c=-0.52,则a,b,c的大小关系为( )A.a<b<c B.b<c<aC.c<b<a D.b<a<c解析:选B a=log25>2,b=log5(log25)∈(0,1),c=-0.52∈(1,2),可得b<c<a.故选B.3.已知函数f(x)=则f(f(1))+f的值是( )A.5 B.3 C.-1 D.解析:选A 由题意可知f(1)=log21=0,f(f(1))=f(0)=30+1=2,f=3-log3+1=3log32+1=2+1=3,所以f(f(1))+f=2+3=5.4.函数y=logax与y=-x+a在同一坐标系中的图象可能是( )解析:选A 当a>1时,函数y=logax的图象为选项B、D中过点(1,0)的曲线,此时函数y=-x+a的图象与y轴的交点的纵坐标a应满足a>1,选项B、D中的图象都不符合要求;当0<a<1时,函数y=logax的图象为选项A、C中过点(1,0)的曲线,此时函数y=-x+a的图象与y轴的交点的纵坐标a应满足0<a<1,选项A中的图象符合要求,选项C中的图象不符合要求.5.设平行于y轴的直线分别与函数y1=log2x及函数y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2=log2x+2的图象上,如图,若△ABC为正三角形,则m·2n=________.解析:由题意知,n=log2m+2,所以m=2n-2.又BC=y2-y1=2,且△ABC为正三角形,所以可知B(m+,n-1)在y1=log2x的图象上,所以n-1=log2(m+),即m=2n-1-,所以2n=4,所以m=,所以m·2n=×4=12.答案:12 一、选择题1.已知b>0,log5b=a,lg b=c,5d=10,则下列等式一定成立的是( )A.d=ac B.a=cdC.c=ad D.d=a+c解析:选B 由已知得5a=b,10c=b,∴5a=10c,∵5d=10,∴5dc=10c,则5dc=5a,∴dc=a,故选B.2.设f(x)=ln x,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是( )A.q=r<p B.p=r<qC.q=r>p D.p=r>q解析:选B 因为b>a>0,故>.又f(x)=ln x(x>0)为增函数,所以f>f(),即q>p.又r=(f(a)+f(b))=(ln a+ln b)=ln=p,即p=r<q.3.(2016·浙江高考)已知a,b>0且a≠1,b≠1,若logab>1,则( )A.(a-1)(b-1)<0 B.(a-1)(a-b)>0C.(b-1)(b-a)<0 D.(b-1)(b-a)>0解析:选D ∵a,b>0且a≠1,b≠1,∴当a>1,即a-1>0时,不等式logab>1可化为alogab>a1,即b>a>1,∴(a-1)(a-b)<0,(b-1)(a-1)>0,(b-1)(b-a)>0.当0<a<1,即a-1<0时,不等式logab>1可化为alogab<a1,即0<b<a<1,∴(a-1)(a-b)<0,(b-1)(a-1)>0,(b-1)·(b-a)>0.综上可知,选D.4.已知lg a+lg b=0(a>0且a≠1,b>0且b≠1),则函数f(x)=ax与g(x)=-logbx的图象可能是( )解析:选B 因为lg a+lg b=0,所以lg ab=0,所以ab=1,即b=,故g(x)=-logbx=-logx=logax,则f(x)与g(x)互为反函数,其图象关于直线y=x对称,结合图象知B正确.故选B.5.(2017·西安模拟)已知函数f(x)=loga2x+b-1(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1解析:选A 由函数图象可知,f(x)在R上单调递增,故a>1.函数图象与y轴的交点坐标为(0,logab),由函数图象可知-1<logab<0,解得<b<1.综上有0<<b<1.6.设函数f(x)=loga|x|(a>0,且a≠1)在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是( )A.f(a+1)>f(2) B.f(a+1)<f(2)C.f(a+1)=f(2) D.不能确定解析:选A 由已知得0<a<1,所以1<a+1<2,又易知函数f(x)为偶函数,故可以判断f(x)在(0,+∞)上单调递减,所以f(a+1)>f(2).二、填空题7.lg+lg+20+52×=________.解析:原式=lg+1+5×5=+5=.答案:8.若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为________.解析:设2+log2a=3+log3b=log6(a+b)=k,可得a=2k-2,b=3k-3,a+b=6k,所以+===108.答案:1089.函数f(x)=log2·log(2x)的最小值为______.解析:依题意得f(x)=log2x·(2+2log2x)=(log2x)2+log2x=2-≥-,当且仅当log2x=-,即x=时等号成立,因此函数f(x)的最小值为-.答案:-10.若函数f(x)=loga(a>0,a≠1)在区间内恒有f(x)>0,则f(x)的单调递增区间为________.解析:令M=x2+x,当x∈时,M∈(1,+∞),f(x)>0,所以a>1.所以函数y=logaM为增函数,又M=2-,因此M的单调递增区间为.又x2+x>0,所以x>0或x<-.所以函数f(x)的单调递增区间为(0,+∞).答案:(0,+∞)三、解答题11.已知函数f(x)是定义在R上的偶函数,f(0)=0,当x>0时,f(x)=logx.(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.解:(1)当x<0时,-x>0,则f(-x)=log(-x).因为函数f(x)是偶函数,所以f(-x)=f(x).所以函数f(x)的解析式为f(x)=(2)因为f(4)=log4=-2,f(x)是偶函数,所以不等式f(x2-1)>-2可化为f(|x2-1|)>f(4).又因为函数f(x)在(0,+∞)上是减函数,所以|x2-1|<4,解得-<x<,即不等式的解集为(-,).12.已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)当a>1时,求使f(x)>0的x的解集.解:(1)要使函数f(x)有意义.则解得-1<x<1.故所求函数f(x)的定义域为(-1,1).(2)f(x)为奇函数.证明:由(1)知f(x)的定义域为(-1,1),且f(-x)=loga(-x+1)-loga(1+x)=-=-f(x),故f(x)为奇函数.(3)因为当a>1时,f(x)在定义域(-1,1)内是增函数,所以f(x)>0⇔>1,解得0<x<1.所以使f(x)>0的x的解集是(0,1).
相关试卷
这是一份高中数学高考2018高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数Ⅰ 课时达标检测(五) 函数及其表示 Word版含答案,共4页。试卷主要包含了已知具有性质等内容,欢迎下载使用。
这是一份高中数学高考2018高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数Ⅰ 课时达标检测(十一) 函数的图象及其应用 Word版含答案,共7页。试卷主要包含了函数f=eq \f的图象大致为等内容,欢迎下载使用。
这是一份高中数学高考2018高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数Ⅰ 课时达标检测(七) 函数的奇偶性及周期性 Word版含答案,共4页。试卷主要包含了下列函数为奇函数的是等内容,欢迎下载使用。