2023年中考数学考前强化复习《矩形、菱形与正方形》精选练习(含答案)
展开2023年中考数学考前强化复习
《矩形、菱形与正方形》精选练习
一 、选择题
1.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为( )
A.28 B.26 C.25 D.22
2.如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为( )
A.16 B.24 C.36 D.54
3.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为( )
A.1.5 B.2﹣2 C.2﹣2 D.4
4.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )
A.(1,﹣1) B.(﹣1,﹣1) C.(,0) D.(0,﹣)
5.如图,在平行四边形ABCD中,对角线AC.BD相交成的锐角α=30°,若AC=8,BD=6,
则平行四边形ABCD的面积是( )
A.6 B.8 C.10 D.12
6.如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )
A. B. C. D.
7.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )
A.﹣ B.﹣1 C. D.
8.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=( )
A. B. C. D.
二 、填空题
9.如图,四边形ABCD和CEFG都是菱形,连接AG,GE,AE,若∠F=60°,EF=4,则△AEG面积为________.
10.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上一点,且AD=3AM,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度最小值是 .
11.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是 .
12.如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为
13.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为 .
14.如图,四边形ABCD是边长为3的正方形,∠BDC的平分线DE交BC于点E,点M、点N分别是CD和DE上的动点,连接AM,则当MN+CN的值最小时,AM= .
三 、解答题
15.如图,已知四边形ABCD为矩形,AD=20cm、AB=10cm.M点从D到A,P点从B到C,两点的速度都为2cm/s;N点从A到B,Q点从C到D,两点的速度都为1cm/s.若四个点同时出发.
(1)判断四边形MNPQ的形状.
(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由.
16.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
17.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
18.探究:已知如图1,在△ABC中,∠A=α(0°<α<90°),AB=c,AC=b,试用含b,c,α的式子表示△ABC的面积;
图1 图2
应用:如图2,在平行四边形ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,试用含b,c,α的式子表示平行四边形ABCD的面积.
参考答案
1.A.
2.B.
3.B.
4.B
5.D
6.C.
7.A.
8.A.
9.答案为:4.
10.答案为:﹣1.
11.答案为:5或4或5.
12.答案为:12.5cm2,5cm2,10cm2.
13.答案为:.
14.答案为:.
15.解:(1)四边形MNPQ是平行四边形. 理由如下:
在矩形ABCD中,AD=BC=20cm,AB=CD=10cm,且∠A=∠B=∠C=∠D=90°.
设运动时间为t秒,则AN=CQ=t cm,BP=DM=2t cm.
∴BN=DQ=(10﹣t)cm,CP=AM=(20﹣2t)cm.
由勾股定理可得,NP=,MQ=
∴NP=MQ.
同理,可得MN=PQ.
∴四边形MNPQ是平行四边形.
(2)能.理由如下:
∵当四边形MNPQ能为菱形时,NP=QP,
∴=,
∴=,解得 t=5.
即四边形MNPQ能为菱形时,运动时间是5 s.
16.解:(1)△AED≌△CEB′
证明:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°,
又∵∠B′EC=∠DEA,
∴△AED≌△CEB′;
(2)由折叠的性质可知,∠EAC=∠CAB,
∵CD∥AB,
∴∠CAB=∠ECA,
∴∠EAC=∠ECA,
∴AE=EC=8﹣3=5.在△ADE中,AD=4,
延长HP交AB于M,则PM⊥AB,
∴PG=PM.
∴PG+PH=PM+PH=HM=AD=4.
17.解:(1)PB=PQ.证明:连接PD,
∵四边形ABCD是正方形,
∴∠ACB=∠ACD,∠BCD=90°,BC=CD,
又∵PC=PC,
∴△DCP≌△BCP(SAS),
∴PD=PB,∠PBC=∠PDC,
∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°,
∴∠PBC=∠PQD,
∴∠PDC=∠PQD,
∴PQ=PD,
∴PB=PQ
(2)PB=PQ.证明:连接PD,
同(1)可证△DCP≌△BCP,
∴PD=PB,∠PBC=∠PDC,
∵∠PBC=∠Q,
∴∠PDC=∠Q,
∴PD=PQ,
∴PB=PQ.
18.解:探究:过点B作BD⊥AC,垂足为D.
∵AB=c,∠A=α,
∴BD=csinα.
∴S△ABC=AC·BD=bcsinα.
应用:过点C作CE⊥DO于点E.∴sinα=.
∵在ABCD中,AC=a,BD=b,∴CO=a,DO=b.
∴S△COD=CO·DO·sinα=absinα.
∴S△BCD=CE·BD=×asinα·b=absinα.
∴SABCD=2S△BCD=absinα.
2023年中考数学考前强化复习《圆》精选练习(含答案): 这是一份2023年中考数学考前强化复习《圆》精选练习(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学考前强化复习《实数》精选练习(含答案): 这是一份2023年中考数学考前强化复习《实数》精选练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学考前强化复习《统计与概率》精选练习(含答案): 这是一份2023年中考数学考前强化复习《统计与概率》精选练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。