高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(三) Word版含答案
展开这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(三) Word版含答案,共5页。
www.ks5u.com板块命题点专练(三)
命题点一 基本初等函数(Ⅰ) | ||
命题指数:☆☆☆☆☆ | 难度:中、低 | 题型:选择题、填空题 |
1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )
A.y=x B.y=lg x
C.y=2x D.y=
解析:选D 函数y=10lg x的定义域与值域均为(0,+∞).
函数y=x的定义域与值域均为(-∞,+∞).
函数y=lg x的定义域为(0,+∞),值域为(-∞,+∞).
函数y=2x的定义域为(-∞,+∞),值域为(0,+∞).
函数y=的定义域与值域均为(0,+∞).故选D.
2.(2016·全国丙卷)已知a=2,b=4,c=25,则( )
A.b<a<c B.a<b<c
C.b<c<a D.c<a<b
解析:选A 因为a=2,b=4=2,由函数y=2x在R上为增函数知,b<a;又因为a=2=4,c=25=5,由函数y=x在(0,+∞)上为增函数知,a<c.综上得b<a<c.故选A.
3.(2013·全国卷Ⅱ)设a=log36,b=log510,c=log714,则( )
A.c>b>a B.b>c>a
C.a>c>b D.a>b>c
解析:选D a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图象,由三个图象的相对位置关系,可知a>b>c,故选D.
4.(2014·浙江高考)在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是( )
解析:选D 当a>1时,函数f(x)=xa(x>0)单调递增,函数g(x)=logax单调递增,且过点(1,0),由幂函数的图象性质可知C错;当0<a<1时,函数f(x)=xa(x>0)单调递增,函数g(x)=logax单调递减,且过点(1,0),排除A,又由幂函数的图象性质可知B错,因此选D.
5.(2015·山东高考)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( )
A.(-∞,-1) B.(-1,0)
C.(0,1) D.(1,+∞)
解析:选C 因为函数y=f(x)为奇函数,所以f(-x)=-f(x),即=-.化简可得a=1,则>3,即-3>0,即>0,故不等式可化为<0,即1<2x<2,解得0<x<1,故选C.
6.(2015·天津高考)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )
A.a<b<c B.a<c<b
C.c<a<b D.c<b<a
解析:选C 由f(x)=2|x-m|-1是偶函数可知m=0,所以f(x)=2|x|-1.
所以a=f(log0.53)=2|log0.53|-1=2log23-1=2,
b=f(log25)=2|log25|-1=2log25-1=4,
c=f(0)=2|0|-1=0,所以c<a<b.
7.(2014·安徽高考)-+log3+log3=______.
解析:原式=-+log3=-3=.
答案:
8.(2015·全国卷Ⅰ)若函数f(x)=xln(x+)为偶函数,则a=________.
解析:∵f(x)为偶函数,∴f(-x)-f(x)=0恒成立,
∴-xln(-x+)-xln(x+)=0恒成立,∴xln a=0恒成立,∴ln a=0,即a=1.
答案:1
9.(2015·山东高考)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是,则a+b=________.
解析:当a>1时,函数f(x)=ax+b在上为增函数,由题意得无解.当0<a<1时,函数f(x)=ax+b在上为减函数,由题意得解得所以a+b=-.
答案:-
10.(2015·天津高考)已知a>0,b>0,ab=8,则当a的值为________时,log2a·log2(2b)取得最大值.
解析:由于a>0,b>0,ab=8,所以b=.
所以log2a·log2(2b)=log2a·log2=log2a·(4-log2a)=-(log2a-2)2+4,
当且仅当log2a=2,即a=4时,log2a·log2(2b)取得最大值4.
答案:4
命题点二 函数与方程 | ||
命题指数:☆☆☆ | 难度:高、中 | 题型:选择题、填空题 |
1.(2014·湖北高考)已知f(x) 是定义在 R上的奇函数,当x≥0 时, f(x)=x2-3x. 则函数g(x)=f(x)-x+3 的零点的集合为( )
A.{1,3} B.{-3,-1,1,3}
C.{2-,1,3} D.{-2-,1,3}
解析:选D 当x≥0时,函数g(x)的零点即方程f(x)=x-3的根,由x2-3x=x-3,解得x=1或3;当x<0时,由f(x)是奇函数得-f(x)=f(-x)=x2-3(-x),即f(x)=-x2-3x.由f(x)=x-3得x=-2-(正根舍去).选D.
2.(2014·北京高考)已知函数f(x)=-log2x,在下列区间中,包含 f(x)零点的区间是( )
A.(0,1) B.(1,2)
C.(2,4) D.(4,+∞)
解析:选C 因为f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=-log24=-<0,所以函数f(x)的零点所在区间为(2,4),故选C.
3.其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.
解析:作出f(x)的图象如图所示.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,∴要使方程f(x)=b有三个不同的根,则4m-m2<m,即m2-3m>0.又m>0,解得m>3.
答案:(3,+∞)
4.(2015·湖北高考)函数f(x)=2sin xsin-x2的零点个数为________.
解析:f(x)=2sin xsin-x2=2sin xcos x-x2=sin 2x-x2,由f(x)=0,得sin 2x=x2.
设y1=sin 2x,y2=x2,在同一平面直角坐标系中画出二者的图象,如图所示.由图象知,两个函数图象有两个交点,故函数f(x)有两个零点.
答案:2
命题点三 函数模型及其应用 | ||
命题指数:☆☆☆ | 难度:高、中 | 题型:选择题、填空题 |
1.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油
解析:选D 根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.
2.(2015·四川高考)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.
解析:由已知条件,得192=eb,∴b=ln 192.
又∵48=e22k+b=e22k+ln 192=192e22k=192(e11k)2,
∴e11k===.
设该食品在33 ℃的保鲜时间是t小时,则t=e33k+ln 192=192e33k=192(e11k)3=192×3=24.
答案:24
相关试卷
这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(五) Word版含答案,共6页。试卷主要包含了故选A,设函数f=Asin等内容,欢迎下载使用。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十五) Word版含答案,共8页。试卷主要包含了故选C,其数据为,8=100等内容,欢迎下载使用。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案,共9页。试卷主要包含了又a=5,,又m>0,故m=3,已知O为坐标原点,F是椭圆C,已知椭圆C等内容,欢迎下载使用。