高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案
展开这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案,共9页。试卷主要包含了又a=5,,又m>0,故m=3,已知O为坐标原点,F是椭圆C,已知椭圆C等内容,欢迎下载使用。
www.ks5u.com板块命题点专练(十三)
命题点一 椭圆 | ||
命题指数:☆☆☆☆☆ | 难度:高、中 | 题型:选择题、填空题、解答题 |
1.(2015·广东高考)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=( )
A.2 B.3
C.4 D.9
解析:选B 由左焦点为F1(-4,0)知c=4.又a=5,
∴25-m2=16,解得m=3或-3.又m>0,故m=3.
2.(2016·全国丙卷)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A. B.
C. D.
解析:选A 如图所示,由题意得A(-a,0),B(a,0),F(-c,0).
设E(0,m),
由PF∥OE,得=,
则|MF|=.①
又由OE∥MF,得=,
则|MF|=.②
由①②得a-c=(a+c),即a=3c,
∴e==.
故选A.
3.(2016·全国乙卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )
A. B.
C. D.
解析:选B 不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为+=1,即bx+cy-bc=0.由题意知=×2b,解得=,即e=.故选B.
4.(2015·浙江高考)椭圆+=1(a>b>0 )的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是________.
解析:设椭圆的另一个焦点为F1(-c,0),如图,连接QF1,QF,设QF与直线y=x交于点M.由题意知M为线段QF的中点,且OM⊥FQ.
又O为线段F1F的中点,
∴F1Q∥OM,∴F1Q⊥QF,|F1Q|=2|OM|.
在Rt△MOF中,tan∠MOF==,|OF|=c,
可解得|OM|=,|MF|=,
故|QF|=2|MF|=,|QF1|=2|OM|=.
由椭圆的定义得|QF|+|QF1|=+=2a,
整理得b=c,
∴a==c,故e==.
答案:
5.(2015·全国卷Ⅱ)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.
(1)求C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解:(1)由题意得=,+=1,
解得a2=8,b2=4.
所以C的方程为+=1.
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).
将y=kx+b代入+=1,
得(2k2+1)x2+4kbx+2b2-8=0.
故xM==,yM=k·xM+b=.
于是直线OM的斜率kOM==-,
即kOM·k=-.
所以直线OM的斜率与直线l的斜率的乘积为定值.
命题点二 双曲线 | ||
命题指数:☆☆☆☆ | 难度:中 | 题型:选择题、填空题 |
1.(2016·全国乙卷)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
解析:选A 由题意得(m2+n)(3m2-n)>0,解得-m2<n<3m2,又由该双曲线两焦点间的距离为4,得m2+n+3m2-n=4,即m2=1,所以-1<n<3.
2.(2015·全国卷Ⅱ)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )
A. B.2
C. D.
解析:选D 不妨取点M在第一象限,如图所示,设双曲线方程为-=1(a>0,b>0),则|BM|=|AB|=2a,∠MBx=180°-120°=60°,
∴点M的坐标为.
∵点M在双曲线上,
∴-=1,解得a=b,
∴c=a,e==.故选D.
3.(2016·全国甲卷)已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )
A. B.
C. D.2
解析:选A 法一:作出示意图,如图,离心率e===,由正弦定理得e====.故选A.
法二:因为MF1与x轴垂直,所以|MF1|=.
又sin∠MF2F1=,所以=,即|MF2|=3|MF1|.由双曲线的定义得2a=|MF2|-|MF1|=2|MF1|=,所以b2=a2,所以c2=b2+a2=2a2,所以离心率e==.
4.(2015·全国卷Ⅱ)已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为________.
解析:法一:∵双曲线的渐近线方程为y=±x,
∴可设双曲线的方程为x2-4y2=λ(λ≠0).
∵双曲线过点(4,),
∴λ=16-4×()2=4,
∴双曲线的标准方程为-y2=1.
法二:∵渐近线y=x过点(4,2),而<2,
∴点(4,)在渐近线y=x的下方,在y=-x的上方(如图).
∴双曲线的焦点在x轴上,
故可设双曲线方程为
-=1(a>0,b>0).
由已知条件可得
解得∴双曲线的标准方程为-y2=1.
答案:-y2=1
5.(2016·北京高考)双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=________.
解析:不妨令B为双曲线的右焦点,A在第一象限,则双曲线如图所示.
∵四边形OABC为正方形,|OA|=2,
∴c=|OB|=2,∠AOB=.
∵直线OA是渐近线,方程为y=x,∴=tan∠AOB=1,即a=b.
又∵a2+b2=c2=8,∴a=2.
答案:2
命题点三 抛物线 | ||
命题指数:☆☆☆☆☆ | 难度:中 | 题型:选择题、填空题、解答题 |
1.(2015·全国卷Ⅰ)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( )
A.3 B.6
C.9 D.12
解析:选B 由题意,设椭圆E的方程为+=1(a>b>0),∵抛物线y2=8x的焦点为(2,0),
∴椭圆中c=2,
又=,∴a=4,b2=a2-c2=12,
从而椭圆的方程为+=1.
∵抛物线y2=8x的准线为x=-2,
∴xA=xB=-2,
将xA=-2代入椭圆方程可得|yA|=3,
由椭圆的对称性可知|AB|=2|yA|=6.
2.(2015·浙江高考)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( )
A. B.
C. D.
解析:选A 由图形可知,△BCF与△ACF有公共的顶点F,且A,B,C三点共线,易知△BCF与△ACF的面积之比就等于.由抛物线方程知焦点F(1,0),作准线l,则l的方程为x=-1.∵点A,B在抛物线上,过A,B分别作AK,BH与准线垂直,垂足分别为点K,H,且与y轴分别交于点N,M.由抛物线定义,得|BM|=|BF|-1,|AN|=|AF|-1.在△CAN中,BM∥AN,∴==.
3.(2015·山东高考)平面直角坐标系xOy中,双曲线C1:-=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为________.
解析:双曲线的两条渐近线方程为y=±x,与抛物线方程联立得交点A,B,抛物线焦点为F,由三角形垂心的性质,得BF⊥OA,即kBF·kOA=-1,又kBF==-,kOA=,所以有=-1,即=,故C1的离心率e== = =.
答案:
4.(2015·全国卷Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.
(1)当k=0时,分别求C在点M和N处的切线方程;
(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
解:(1)由题设可得M(2,a),N(-2,a),
或M(-2,a),N(2,a).
又y′=,
故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),
即x-y-a=0.
y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),
即x+y+a=0.
故所求切线方程为x-y-a=0和x+y+a=0.
(2)存在符合题意的点.理由如下:
设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.
将y=kx+a代入C的方程,得x2-4kx-4a=0.
故x1+x2=4k,x1x2=-4a.
从而k1+k2=+
==.
当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,
故∠OPM=∠OPN,所以点P(0,-a)符合题意.
命题点四 圆锥曲线中的综合问题 | ||
命题指数:☆☆☆☆☆ | 难度:高 | 题型:解答题 |
1.(2016·全国甲卷)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(1)当|AM|=|AN|时,求△AMN的面积;
(2)当2|AM|=|AN|时,证明:<k<2.
解:(1)设M(x1,y1),则由题意知y1>0.
由已知及椭圆的对称性知,直线AM的倾斜角为.
又A(-2,0),因此直线AM的方程为y=x+2.
将x=y-2代入+=1得7y2-12y=0.
解得y=0或y=,
所以y1=.
因此△AMN的面积S△AMN=2×××=.
(2)证明:设直线AM的方程为y=k(x+2)(k>0),
代入+=1得(3+4k2)x2+16k2x+16k2-12=0.
由x1·(-2)=,得x1=,
故|AM|=|x1+2|=.
由题意,设直线AN的方程为y=-(x+2),
故同理可得|AN|=.
由2|AM|=|AN|,得=,
即4k3-6k2+3k-8=0.
设f(t)=4t3-6t2+3t-8,则k是f(t)的零点.
f′(t)=12t2-12t+3=3(2t-1)2≥0,
所以f(t)在(0,+∞)上单调递增.
又f()=15-26<0,f(2)=6>0,
因此f(t)在(0,+∞)上有唯一的零点,且零点k在(,2)内,
所以<k<2.
2.(2016·全国乙卷)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
解:(1)证明:因为|AD|=|AC|,EB∥AC,
所以∠EBD=∠ACD=∠ADC,所以|EB|=|ED|,
故|EA|+|EB|=|EA|+|ED|=|AD|.
又圆A的标准方程为(x+1)2+y2=16,
从而|AD|=4,
所以|EA|+|EB|=4.
由题设得A(-1,0),B(1,0),|AB|=2,
由椭圆定义可得点E的轨迹方程为+=1(y≠0).
(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).
由得(4k2+3)x2-8k2x+4k2-12=0,
则x1+x2=,x1x2=.
所以|MN|=|x1-x2|=.
过点B(1,0)且与l垂直的直线m:y=-(x-1),
点A到直线m的距离为,
所以|PQ|=2=4 .
故四边形MPNQ的面积S=|MN||PQ|=12.
可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).
当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,
故四边形MPNQ的面积为12.
综上,四边形MPNQ面积的取值范围为[12,8).
相关试卷
这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(五) Word版含答案,共6页。试卷主要包含了故选A,设函数f=Asin等内容,欢迎下载使用。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十五) Word版含答案,共8页。试卷主要包含了故选C,其数据为,8=100等内容,欢迎下载使用。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十二) Word版含答案,共5页。试卷主要包含了故选D,设直线y=x+2a与圆C,直线l1,已知直线l等内容,欢迎下载使用。