终身会员
搜索
    上传资料 赚现金

    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案

    立即下载
    加入资料篮
    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案第1页
    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案第2页
    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案

    展开

    这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十三) Word版含答案,共9页。试卷主要包含了又a=5,,又m>0,故m=3,已知O为坐标原点,F是椭圆C,已知椭圆C等内容,欢迎下载使用。


     www.ks5u.com板块命题点专练(十三)

    命题点一 椭圆

    命题指数:☆☆☆☆☆

    难度:高

    题型:选择题填空题解答题

    1.(2015·广东高考)已知椭圆=1(m>0)的左焦点为F1(-4,0),m=(  )

    A2           B.3

    C4  D.9

    解析:选B 由左焦点为F1(-4,0)c=4.又a=5

    25-m2=16,解得m=3或-3.又m>0,m=3.

    2.(2016·全国丙卷)已知O为坐标原点F是椭圆C=1(ab>0)的左焦点AB分别为C的左右顶点.PC上一点PFx轴.过点A的直线l与线段PF交于点My轴交于点E.若直线BM经过OE的中点C的离心率为(  )

    A.  B.

    C.  D.

    解析:选A 如图所示由题意得A(-a,0)B(a,0)F(-c,0).

    E(0m)

    PFOE

    则|MF|=

    又由OEMF

    则|MF|=

    ①②ac(ac)a3c

    e

    故选A.

    3(2016·全国乙卷)直线l经过椭圆的一个顶点和一个焦点若椭圆中心到l的距离为其短轴长的则该椭圆的离心率为(  )

    A.  B.

    C.  D.

    解析:选B 不妨设直线l经过椭圆的一个顶点B(0b)和一个焦点F(c,0)则直线l的方程为=1bxcybc=0.由题意知×2b解得e.故选B.

    4(2015·浙江高考)椭圆=1(ab0 )的右焦点F(c,0)关于直线yx的对称点Q在椭圆上则椭圆的离心率是________.

    解析:设椭圆的另一个焦点为F1(-c,0)如图连接QF1QFQF与直线yx交于点M.由题意知M为线段QF的中点OMFQ

    O为线段F1F的中点

    F1QOMF1QQF|F1Q|=2|OM|.

    在Rt△MOFtanMOF|OF|=c

    可解得|OM|=|MF|=

    故|QF|=2|MF|=|QF1|=2|OM|=

    由椭圆的定义得|QF|+|QF1|=2a

    整理得bc

    ace

    答案:

    5(2015·全国卷)已知椭圆C=1(a>b>0)的离心率为点(2)在C上.

    (1)求C的方程;

    (2)直线l不过原点O且不平行于坐标轴lC有两个交点AB线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.

    解:(1)由题意得=1

    解得a2=8b2=4.

    所以C的方程为=1.

    (2)证明:设直线lykxb(k≠0b≠0)A(x1y1)B(x2y2)M(xMyM).

    ykxb代入=1

    得(2k2+1)x2+4kbx+2b2-8=0.

    xMyMk·xMb

    于是直线OM的斜率kOM=-

    kOM·k=-

    所以直线OM的斜率与直线l的斜率的乘积为定值.

     

    命题点二 双曲线

    命题指数:☆☆☆☆

    难度:中

    题型:选择题填空题

    1.(2016·全国乙卷)已知方程=1表示双曲线且该双曲线两焦点间的距离为4n的取值范围是(  )

    A(-1,3)  B.(-1)

    C(0,3)  D.(0)

    解析:选A 由题意得(m2n)(3m2n)>0解得-m2<n<3m2又由该双曲线两焦点间的距离为4m2n3m2n=4m2=1所以-1<n<3.

    2(2015·全国卷)已知AB为双曲线E的左右顶点MEABM为等腰三角形且顶角为120°E的离心率为(  )

    A  B.2

    C  D.

    解析D 不妨取点M在第一象限如图所示设双曲线方程为=1(a>0b>0)|BM|=|AB|=2aMBx=180°-120°=60°

    M的坐标为

    M在双曲线上

    =1解得ab

    cae.故选D

    3(2016·全国甲卷)已知F1F2是双曲线E=1的左右焦点MEMF1x轴垂直sinMF2F1E的离心率为(  )

    A.  B.

    C.  D.2

    解析:选A 法一:作出示意图如图离心率e由正弦定理得e.故选A.

    法二:因为MF1x轴垂直所以|MF1|=

    又sinMF2F1所以即|MF2|=3|MF1|.由双曲线的定义得2a=|MF2|-|MF1|=2|MF1|=所以b2a2所以c2b2a22a2所以离心率e

    4(2015·全国卷)已知双曲线过点(4)且渐近线方程为y=±x则该双曲线的标准方程为________.

    解析:法一:双曲线的渐近线方程为y=±x

    可设双曲线的方程为x2-4y2λ(λ≠0).

    双曲线过点(4)

    λ=16-4×()2=4

    双曲线的标准方程为y2=1.

    法二:渐近线yx过点(4,2)<2

    点(4)在渐近线yx的下方y=-x的上方(如图).

    双曲线的焦点在x轴上

    故可设双曲线方程为

    =1(a>0b>0).

    由已知条件可得

    解得双曲线的标准方程为y2=1.

    答案:y2=1

    5(2016·北京高考)双曲线=1(a>0b>0)的渐近线为正方形OABC的边OAOC所在的直线B为该双曲线的焦点.若正方形OABC的边长为2a=________.

    解析:不妨令B为双曲线的右焦点A在第一象限则双曲线如图所示.

    四边形OABC为正方形|OA|=2

    c=|OB|=2AOB

    直线OA是渐近线方程为yx=tanAOB=1ab

    a2b2c2=8a=2.

    答案:2

     

    命题点三 抛物线

    命题指数:☆☆☆☆☆

    难度:中

    题型:选择题填空题解答题

    1.(2015·全国卷)已知椭圆E的中心在坐标原点离心率为E的右焦点与抛物线Cy2=8x的焦点重合ABC的准线与E的两个交点则|AB|=(  )

    A3  B.6

    C.9  D.12

    解析:选B 由题意设椭圆E的方程为=1(a>b>0)抛物线y2=8x的焦点为(2,0)

    椭圆中c=2

    a=4b2a2c2=12

    从而椭圆的方程为=1.

    抛物线y2=8x的准线为x=-2

    xAxB=-2

    xA=-2代入椭圆方程可得|yA|=3

    由椭圆的对称性可知|AB|=2|yA|=6.

    2.(2015·浙江高考)如图设抛物线y2=4x的焦点为F不经过焦点的直线上有三个不同的点ABC其中点AB在抛物线上Cy轴上BCFACF的面积之比是(  )

    A.       B.

    C.  D.   

    解析:选A 由图形可知BCF与△ACF有公共的顶点FABC三点共线易知△BCF与△ACF的面积之比就等于.由抛物线方程知焦点F(1,0)作准线ll的方程为x=-1.AB在抛物线上AB分别作AKBH与准线垂直垂足分别为点KH且与y轴分别交于点NM.由抛物线定义得|BM|=|BF|-1|AN|=|AF|-1.在△CANBMAN

    3(2015·山东高考)平面直角坐标系xOy双曲线C1=1(a0b0)的渐近线与抛物线C2x2=2py(p0)交于点OAB.若OAB的垂心为C2的焦点C1的离心率为________.

    解析:双曲线的两条渐近线方程为y=±x与抛物线方程联立得交点AB抛物线焦点为F由三角形垂心的性质BFOAkBF·kOA=-1kBFkOA所以有=-1C1的离心率e

    答案:

    4(2015·全国卷)在直角坐标系xOy曲线Cy与直线lykxa(a>0)交于MN两点.

    (1)当k=0时分别求C在点MN处的切线方程;

    (2)y轴上是否存在点P使得当k变动时总有OPMOPN?说明理由.

    解:(1)由题设可得M(2a)N(-2a)

    M(-2a)N(2a).

    y′=

    yx=2处的导数值为C在点(2a)处的切线方程为ya(x-2)

    xya=0.

    yx=-2处的导数值为-C在点(-2a)处的切线方程为ya=-(x+2)

    xya=0.

    故所求切线方程为xya=0和xya=0.

    (2)存在符合题意的点.理由如下:

    P(0b)为符合题意的点M(x1y1)N(x2y2)直线PMPN的斜率分别为k1k2

    ykxa代入C的方程x2-4kx4a=0.

    x1x2=4kx1x2=-4a

    从而k1k2

    b=-ak1k2=0则直线PM的倾斜角与直线PN的倾斜角互补

    OPMOPN所以点P(0a)符合题意.

     

    命题点四 圆锥曲线中的综合问题

    命题指数:☆☆☆☆☆

    难度:高

    题型:解答题

    1.(2016·全国甲卷)已知A是椭圆E=1的左顶点斜率为k(k0)的直线交EAM两点NEMANA

    (1)当|AM|=|AN|时求△AMN的面积;

    (2)当2|AM|=|AN|时证明:k2.

    解:(1)设M(x1y1)则由题意知y10.

    由已知及椭圆的对称性知直线AM的倾斜角为

    A(-2,0)因此直线AM的方程为yx+2.

    xy-2代入=1得7y2-12y=0.

    解得y=0或y

    所以y1

    因此△AMN的面积SAMN=2×××

    (2)证明:设直线AM的方程为yk(x+2)(k0)

    代入=1得(3+4k2)x2+16k2x+16k2-12=0.

    x1·(-2)=x1

    故|AM|=|x1+2|

    由题意设直线AN的方程为y=-(x+2)

    故同理可得|AN|=

    由2|AM|=|AN|

    即4k3-6k2+3k-8=0.

    f(t)=4t3-6t2+3t-8kf(t)的零点.

    f′(t)=12t2-12t+3=3(2t-1)2≥0

    所以f(t)在(0+∞)上单调递增.

    f()=15-260f(2)=60

    因此f(t)在(0+∞)上有唯一的零点且零点k在(2)内

    所以k2

    2(2016·全国乙卷)设圆x2y2+2x-15=0的圆心为A直线l过点B(1,0)且与x轴不重合l交圆ACD两点BAC的平行线交AD于点E

    (1)证明|EA|+|EB|为定值并写出点E的轨迹方程;

    (2)设点E的轨迹为曲线C1直线lC1MN两点B且与l垂直的直线与圆A交于PQ两点求四边形MPNQ面积的取值范围.

    解:(1)证明:因为|AD|=|AC|EBAC

    所以EBDACDADC所以|EB|=|ED|

    故|EA|+|EB|=|EA|+|ED|=|AD|.

    又圆A的标准方程为(x+1)2y2=16

    从而|AD|=4

    所以|EA|+|EB|=4.

    由题设得A(-1,0)B(1,0)|AB|=2

    由椭圆定义可得点E的轨迹方程为=1(y≠0).

    (2)当lx轴不垂直时l的方程为yk(x-1)(k≠0)M(x1y1)N(x2y2).

    得(4k2+3)x2-8k2x+4k2-12=0

    x1x2x1x2

    所以|MN|=|x1x2|=

    过点B(1,0)且与l垂直的直线my=-(x-1)

    A到直线m的距离为

    所以|PQ|=2=4

    故四边形MPNQ的面积S|MN||PQ|=12

    可得当lx轴不垂直时四边形MPNQ面积的取值范围为(12,8).

    lx轴垂直时其方程为x=1|MN|=3|PQ|=8

    故四边形MPNQ的面积为12.

    综上四边形MPNQ面积的取值范围为[12,8).

     

    相关试卷

    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(五) Word版含答案:

    这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(五) Word版含答案,共6页。试卷主要包含了故选A,设函数f=Asin等内容,欢迎下载使用。

    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十五) Word版含答案:

    这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十五) Word版含答案,共8页。试卷主要包含了故选C,其数据为,8=100等内容,欢迎下载使用。

    高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十二) Word版含答案:

    这是一份高中数学高考2018高考数学(文)大一轮复习习题 板块命题点专练(十二) Word版含答案,共5页。试卷主要包含了故选D,设直线y=x+2a与圆C,直线l1,已知直线l等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map