高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十六) 任意角和弧度制及任意角的三角函数 Word版含答案
展开
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十六) 任意角和弧度制及任意角的三角函数 Word版含答案,共5页。
课时跟踪检测 (十六) 任意角和弧度制及任意角的三角函数一抓基础,多练小题做到眼疾手快1.已知点P(tan α,cos α)在第三象限,则角α的终边在( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析:选B 因为点P在第三象限,所以所以α的终边在第二象限,故选B.2.设角α终边上一点P(-4a,3a)(a<0),则sin α的值为( )A. B.- C. D.-解析:选B 设点P与原点间的距离为r,∵P(-4a,3a),a<0,∴r==|5a|=-5a.∴sin α==-.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( )A. B.C. D.2解析:选C 设圆半径为r,则其内接正三角形的边长为r,所以r=αr,所以α=.4.在直角坐标系中,O是原点,A(,1),将点A绕O逆时针旋转90°到B点,则B点坐标为__________.解析:依题意知OA=OB=2,∠AOx=30°,∠BOx=120°,设点B坐标为(x,y),所以x=2cos 120°=-1,y=2sin 120°=,即B(-1,).答案:(-1,)5.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-,则y=________.解析:因为sin θ==-,所以y<0,且y2=64,所以y=-8.答案:-8二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( )A. B.C.- D.-解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快10分钟,故应转过的角为圆周的,即为-×2π=-.2.(2016·福州一模)设α是第二象限角,P(x,4)为其终边上的一点,且cos α=x,则tan α=( )A. B.C.- D.-解析:选D 因为α是第二象限角,所以cos α=x<0,即x<0.又cos α=x=.解得x=-3,所以tan α==-.3.已知角α终边上一点P的坐标是(2sin 2,-2cos 2),则sin α等于( )A.sin 2 B.-sin 2C.cos 2 D.-cos 2解析:选D 因为r==2,由任意三角函数的定义,得sin α==-cos 2.4.设θ是第三象限角,且=-cos ,则是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角解析:选B 由θ是第三象限角,知为第二或第四象限角,∵=-cos ,∴cos <0,综上知为第二象限角.5.集合中的角所表示的范围(阴影部分)是( )解析:选C 当k=2n(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样;当k=2n+1(n∈Z)时,2nπ+π+≤α≤2nπ+π+,此时α表示的范围与π+≤α≤π+表示的范围一样.6.与2 017°的终边相同,且在0°~360°内的角是________.解析:∵2 017°=217°+5×360°,∴在0°~360°内终边与2 017°的终边相同的角是217°.答案:217°7.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k∈Z),所以180°-α是第一象限的角.答案:一8.一扇形是从一个圆中剪下的一部分,半径等于圆半径的,面积等于圆面积的,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r,则扇形的半径为,记扇形的圆心角为α,则=,∴α=.∴扇形的弧长与圆周长之比为==.答案: 9.在(0,2π)内,使sin x>cos x成立的x的取值范围为____________________.解析:如图所示,找出在(0,2π)内,使sin x=cos x的x值,sin=cos=,sin=cos=-.根据三角函数线的变化规律标出满足题中条件的角x∈.答案:10.已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.解:设扇形AOB的半径为r,弧长为l,圆心角为α,(1)由题意可得解得或∴α==或α==6.(2)法一:∵2r+l=8,∴S扇=lr=l·2r≤2=×2=4,当且仅当2r=l,即α==2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB=2sin 1×2=4sin 1.法二:∵2r+l=8,∴S扇=lr=r(8-2r)=r(4-r)=-(r-2)2+4≤4,当且仅当r=2,即α==2时,扇形面积取得最大值4.∴弦长AB=2sin 1×2=4sin 1.三上台阶,自主选做志在冲刺名校1.若α是第三象限角,则下列各式中不成立的是( )A.sin α+cos α<0 B.tan α-sin α<0C.cos α-tan α<0 D.tan αsin α<0解析:选B ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A、C、D.2.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为( )A.1 B.-1 C.3 D.-3解析:选B 由α=2kπ-(k∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.3.已知sin α<0,tan α>0.(1)求α角的集合;(2)求终边所在的象限;(3)试判断 tansin cos的符号.解:(1)由sin α<0,知α在第三、四象限或y轴的负半轴上;由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为.(2)由2kπ+π<α<2kπ+,k∈Z,得kπ+<<kπ+,k∈Z,故终边在第二、四象限.(3)当在第二象限时,tan <0,sin >0, cos <0,所以tan sin cos取正号;当在第四象限时, tan<0,sin<0, cos>0,所以 tansincos也取正号.因此,tansin cos 取正号.
相关试卷
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十九) 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 Word版含答案,共9页。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (二十三) 正弦定理和余弦定理的应用 Word版含答案,共8页。
这是一份高中数学高考2018高考数学(文)大一轮复习习题 第三章 三角函数、解三角形 课时跟踪检测 (十七) 同角三角函数的基本关系与诱导公式 Word版含答案,共6页。试卷主要包含了求值等内容,欢迎下载使用。